Mesoscopic model for binary fluids
C. Echeverria, K. Tucci, O. Alvarez-Llamoza, E. E. Orozco-Guillén, M. Morales, M. G. Cosenza
Mesoscopic model for binary fluids
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
multiparticle collision dynamics / mesoscopic models / phase separation / interface dynamics
[1] |
M.Müller, D.Charypar, and M.Gross, Particle-based fluid simulation for interactive applications, in: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp 154–159(2003)
|
[2] |
S.Premžoe, T.Tasdizen, J.Bigler, A.Lefohn, and R. T.Whitaker, Particle-based simulation of fluids, Comput. Graph. Forum22(3), 401(2003)
CrossRef
ADS
Google scholar
|
[3] |
Z. G.Mills, W.Mao, and A.Alexeev, Mesoscale modeling: Solving complex flows in biology and biotechnology, Trends Biotechnol. 31(7), 426(2013)
CrossRef
ADS
Google scholar
|
[4] |
M. G.Saundersand G. A.Voth, Coarse-graining methods for computational biology, Annu. Rev. Biophys. 42(1), 73(2013)
CrossRef
ADS
Google scholar
|
[5] |
U.Frisch, B.Hasslacher, and Y.Pomeau, Lattice-gas automata for the Navier–Stokes equation, Phys. Rev. Lett. 56(14), 1505(1986)
CrossRef
ADS
Google scholar
|
[6] |
S.Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[7] |
G.Falcucci, S.Ubertini, and S.Succi, Lattice Boltzmann simulations of phase-separating flows at large density ratios: The case of doubly-attractive pseudopotentials, Soft Matter6(18), 4357(2010)
CrossRef
ADS
Google scholar
|
[8] |
G.Falcucci, G.Bella, G.Shiatti, S.Chibbaro, M.Sbragaglia, and S.Succi, Lattice Boltzmann models with mid-range interactions, Commun. Comput. Phys. 2, 1071(2007)
|
[9] |
G.Falcucci, S.Ubertini, C.Biscarini, S. D.Francesco,D.Chiappini, S.Palpacelli, A. D.Maio, and S.Succi, Lattice Boltzmann methods for multiphase flow simulations across scales, Commun. Comput. Phys. 9(02), 269(2011)
CrossRef
ADS
Google scholar
|
[10] |
P. J.Hoogerbruggeand J.Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett.19(3), 155(1992)
CrossRef
ADS
Google scholar
|
[11] |
R. D.Grootand P. B.Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107(11), 4423(1997)
CrossRef
ADS
Google scholar
|
[12] |
P.Españoland M.Revenga, Smoothed dissipative particle dynamics, Phys. Rev. E67(2), 026705(2003)
CrossRef
ADS
Google scholar
|
[13] |
A.Malevanetsand R.Kapral, Mesoscopic model for solvent dynamics, J. Chem. Phys. 110(17), 8605(1999)
CrossRef
ADS
Google scholar
|
[14] |
A.Malevanetsand R.Kapral, Solute molecular dynamics in a mesoscale solvent, J. Chem. Phys. 112(16), 7260(2000)
CrossRef
ADS
Google scholar
|
[15] |
A.Malevanetsand R.Kapral, Mesoscopic multi-particle collision model for fluid ow and molecular dynamics, in: Novel Methods in Soft Matter Simulations, Eds. M Karttunen, I. Vattulainen, and A. Lukkarinen, Berlin: Springer, 2003
|
[16] |
G.Gompper, T.Ihle, K.Kroll, and R. G.Winkler, Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids, advanced computer simulation approaches for soft matter sciences III, Adv. Polym. Sci. 221, 1 (2009)
|
[17] |
J. T.Paddingand A. A.Louis, Hydrodynamic and Brownian fluctuations in sedimenting suspensions, Phys. Rev. Lett.93(22), 220601(2004)
CrossRef
ADS
Google scholar
|
[18] |
M.Hecht, J.Harting, M.Bier, J.Reinshagen, and H. J.Herrmann, Shear viscosity of claylike colloids in computer simulations and experiments, Phys. Rev. E74(2), 021403(2006)
CrossRef
ADS
Google scholar
|
[19] |
K.Mussawisade, M.Ripoll, R. G.Winkler, and G.Gompper, Dynamics of polymers in a particle-based mesoscopic solvent, J. Chem. Phys. 123(14), 144905(2005)
CrossRef
ADS
Google scholar
|
[20] |
M.Ripoll, R. G.Winkler, and G.Gompper, Hydrodynamic screening of star polymers in shear flow, Eur. Phys. J. E23(4), 349(2007)
CrossRef
ADS
Google scholar
|
[21] |
C.Echeverriaand R.Kapral, Macromolecular dynamics in crowded environments, J. Chem. Phys. 132(10), 104902(2010)
CrossRef
ADS
Google scholar
|
[22] |
C.Echeverria, Y.Togashi, A. S.Mikhailov, and R.Kapral, A mesoscopic model for protein enzymatic dynamics in solution, Phys. Chem. Chem. Phys. 13(22), 10527(2011)
CrossRef
ADS
Google scholar
|
[23] |
C.Echeverriaand R.Kapral, Molecular crowding and protein enzymatic dynamics, Phys. Chem. Chem. Phys. 14(19), 6755(2012)
CrossRef
ADS
Google scholar
|
[24] |
C.Echeverriaand R.Kapral, Diffusional correlations among multiple active sites in a single enzyme, Phys. Chem. Chem. Phys. 16(13), 6211(2014)
CrossRef
ADS
Google scholar
|
[25] |
H.Noguchiand G.Gompper, Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations, Phys. Rev. E72(1), 011901(2005)
CrossRef
ADS
Google scholar
|
[26] |
K.Rohlf, S.Fraser, and R.Kapral, Reactive multiparticle collision dynamics, Comput. Phys. Commun. 179(1–3), 132(2008)
CrossRef
ADS
Google scholar
|
[27] |
K.Tucciand R.Kapral, Mesoscopic model for diffusioninfluenced reaction dynamics, J. Chem. Phys. 120(17), 8262(2004)
CrossRef
ADS
Google scholar
|
[28] |
K.Tucciand R.Kapral, Mesoscopic multi-particle collision dynamics of reaction diffusion fronts, J. Phys. Chem. B109(45), 21300(2005)
CrossRef
ADS
Google scholar
|
[29] |
C.Echevería, K.Tucci, and R.Kapral, Diffusion and reaction in crowded environments, J. Phys.: Condens. Matter19(6), 065146(2007)
CrossRef
ADS
Google scholar
|
[30] |
C.Echeverriaand R.Kapral, Autocatalytic reaction dynamics in systems crowded by catalytic obstacles, Physica D239(11), 791(2010)
CrossRef
ADS
Google scholar
|
[31] |
Y.Hashimoto, Y.Chen, and H.Ohashi, Immiscible realcoded lattice gas, Comput. Phys. Commun. 129(1–3), 56(2000)
CrossRef
ADS
Google scholar
|
[32] |
Y.Inoue, Y.Chen, and H.Ohashi, A mesoscopic simulation model for immiscible multiphase fluids, J. Comput. Phys. 201(1), 191(2004)
CrossRef
ADS
Google scholar
|
[33] |
T.Sakai, Y.Chen, and H.Ohashi, Real-coded lattice gas model for ternary amphiphilic fluids, Phys. Rev. E65(3), 031503(2002)
CrossRef
ADS
Google scholar
|
[34] |
F.Drube, Selfdiffusiophoretic Janus Colloids, Doctoral dissertation, Ludwig-Maximilians-Universität, München, 2013
|
[35] |
E.Tüzel, G.Pan, T.Ihle, and D. M.Kroll, Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures,Europhys. Lett. 80(4), 40010(2007)
CrossRef
ADS
Google scholar
|
[36] |
T.Ihleand D. M.Kroll, Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow, Phys. Rev. E63(2), 020201(2001)
CrossRef
ADS
Google scholar
|
[37] |
M.Laradji, S.Toxvaerd, and O. G.Mouritsen, Molecular dynamics simulation of spinodal decomposition in three-dimensional binary fluids, Phys. Rev. Lett. 77(11), 2253(1996)
CrossRef
ADS
Google scholar
|
[38] |
S. A.Safran, Statistical Thermodynamics of Surfaces: Interfaces and Membranes, Addison-Wesley, 1994
|
[39] |
A. J.Bray, Theory of phase-ordering kinetics, Adv. Phys. 51, 481(2002)
CrossRef
ADS
Google scholar
|
[40] |
E.Díaz-Herrera, J.Alejandre, G.Ramirez-Santiago, and F.Forstmann, Interfacial tension behavior of binary and ternary mixtures of partially miscible Lennard- Jones fluids: A molecular dynamics simulation, J. Chem. Phys. 110(16), 8084(1999)
CrossRef
ADS
Google scholar
|
[41] |
S.Iatsevitchand F.Forstmann, Density profiles at liquid–vapor and liquid–liquid interfaces: An integral equation study, J. Chem. Phys. 107(17), 6925(1997)
CrossRef
ADS
Google scholar
|
[42] |
H. X.Zhou, G.Rivas, and A. P.Minton, Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences, Annu. Rev. Biophys. 37(1), 375(2008)
CrossRef
ADS
Google scholar
|
[43] |
A. S.Verkman, Solute and macromolecule diffusion in cellular aqueous compartments, Trends Biochem. Sci.27(1), 27(2002)
CrossRef
ADS
Google scholar
|
[44] |
L.Stagg, S. Q.Zhang, M. S.Cheung, and P.Wittung- Stafshede, Molecular crowding enhances native structure and stability of a/bprotein flavodoxin, Proc. Natl. Acad. Sci. USA104(48), 18976(2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |