Contrasting microscopic interactions determine the properties of water/methanol solutions

Carmelo Corsaro , Francesco Mallamace , Sebastiano Vasi , Sow-Hsin Chen , H. Eugene Stanley , Domenico Mallamace

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138201

PDF (979KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 138201 DOI: 10.1007/s11467-017-0685-7
RESEARCH ARTICLE

Contrasting microscopic interactions determine the properties of water/methanol solutions

Author information +
History +
PDF (979KB)

Abstract

Herein we study the different microscopic interactions occurring in water/methanol solutions at different methanol molar fractions, using NMR spctroscopy. Temperature was found to determine which interaction dominates. It was found that the mixing between water and methanol is non-ideal because of the presence of interactions like hydrophobicity and hydrophilicity. These results indicate that the competition between hydrophilic and hydrophobic interactions is different in different thermal regions, and that the physical properties of the solution are determined by the character of the solution itself, which in turn depends on the mole fraction of methanol and on the temperature.

Keywords

aqueous solutions / hydrophobicity / NMR / hydrophilicity

Cite this article

Download citation ▾
Carmelo Corsaro, Francesco Mallamace, Sebastiano Vasi, Sow-Hsin Chen, H. Eugene Stanley, Domenico Mallamace. Contrasting microscopic interactions determine the properties of water/methanol solutions. Front. Phys., 2018, 13(1): 138201 DOI:10.1007/s11467-017-0685-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. H.Guo, Y.Luo, A.Augustsson , S.Kashtanov, J. E.Rubensson, D. K.Shuh , H.Ågren, and J.Nordgren, Molecular structure of alcohol–water mixtures, Phys. Rev. Lett. 91(15), 157401 (2003)

[2]

T.Yamaguchi, K.Hidaka, and A. K.Soper , The structure of liquid methanol revisited: A neutron diffraction experiment at –80°C and+25°C, Mol. Phys. 96(8), 1159(1999)

[3]

R.Ludwig, Water: From clusters to the bulk, Angew. Chem. Int. Ed. 40(10), 1808(2001)

[4]

A. K.Soper, L.Dougan, J.Crain , and J. L.Finney , Excess entropy in alcohol–water solutions: A simple clustering explanation, J. Phys. Chem. B110(8), 3472(2006)

[5]

Y.Zhong, G. L.Warren, and S.Patel , Thermodynamic and structural properties of methanol–water solutions using non-additive interaction models, J. Comput. Chem. 29(7), 1142(2008)

[6]

F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi,S.Vasi, and H. E.Stanley , Dynamical properties of watermethanol solutions, J. Chem. Phys. 144(6), 064506(2016)

[7]

R. K.Lam, J. W.Smith, and R. J.Saykally , Communication: Hydrogen bonding interactions in water–alcohol mixtures from X-ray absorption spectroscopy, J. Chem. Phys. 144(19), 191103(2016)

[8]

F.Mallamace, P.Baglioni, C.Corsaro , S. H.Chen, D.Mallamace, C.Vasi , and H. E.Stanley , The influence of water on protein properties, J. Chem. Phys. 141(16), 165104(2014)

[9]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)

[10]

R. E.Gibson, The compressions and specific volumes of aqueous solutions of resorcinol and methanol at 25° and the behavior of water in these solutions, J. Am. Chem. Soc. 57(9), 1551(1935)

[11]

H. S.Frankand M. W. Evans, Free Volume and Entropy in Condensed Systems III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes, J. Chem. Phys. 13(11), 507(1945)

[12]

Y.Koga, K.Nishikawa, and P.Westh , “Icebergs” or no “icebergs” in aqueous alcohols?: Compositiondependent mixing schemes, J. Phys. Chem. A108(17), 3873(2004)

[13]

C.Corsaro, R.Maisano, D.Mallamace , and G.Dugo, 1H NMR study of water/methanol solutions as a function of temperature and concentration, Physica A392(4), 596(2013)

[14]

W.Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)

[15]

C.Corsaro, J.Spooren, C.Branca , N.Leone, M.Broccio, C.Kim , S. H.Chen, H. E.Stanley, and F.Mallamace , Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K<T<295 K, J. Phys. Chem. B112(34), 10449(2008)

[16]

S.Dixit, J.Crain, W. C. K.Poon , J. L.Finney, and A. K. Soper, Molecular segregation observed in a concentrated alcohol water solution, Nature416(6883), 829(2002)

[17]

L.Dougan, R.Hargreaves, S. P.Bates , J. L.Finney, V.Réat, A. K.Soper , and J.Crain, Segregation in aqueous methanol enhanced by cooling and compression, J. Chem. Phys. 122(17), 174514(2005)

[18]

M.Požar, A. Kerasidou, B.Lovrinčević , L.Zoranić, M. Mijaković, T.Primorac, F.Sokolić , V.Teboul, and A.Perera, The microscopic structure of cold aqueous methanol mixtures, J. Chem. Phys. 145(14), 144502(2016)

[19]

L.Dougan, S. P.Bates, R.Hargreaves , J. P.Fox,J.Crain, J. L.Finney , V.Reat, and A. K. Soper, Methanol-water solutions: A bi-percolating liquid mixture, J. Chem. Phys. 121(13), 6456(2004)

[20]

M.Nagasaka, K.Mochizuki, V.Leloup , and N.Kosugi, Local structures of methanol-water binary solutions studied by soft X-ray absorption spectroscopy, J. Phys. Chem. B118(16), 4388(2014)

[21]

H.Schott, Hydration of primary alcohols, J. Chem. Eng. Data14(2), 237(1969)

[22]

Z. J.Derlacki, A. J.Easteal, A. V. J.Edge , L. A.Woolf, and Z. J. Roksandic, Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol–water solutions at 278 and 298 K, J. Phys. Chem. 89(24), 5318(1985)

[23]

S. Z.Mikhailand W. R. Kimel, Densities and viscosities of methanol–water mixtures, J. Chem. Eng. Data6(4), 533(1961)

[24]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141, 18C504(2014)

[25]

R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid–liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)

[26]

Y.Niand J. L. Skinner, Evidence for a liquid–liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line, J. Chem. Phys. 144(21), 214501(2016)

[27]

F.Mallamace, C.Branca, C.Corsaro , N.Leone, J.Spooren, S. H.Chen , and H. E.Stanley , Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA107(52), 22457(2010)

[28]

F.Mallamace, C.Corsaro, H. E.Stanley , D.Mallamace, and S. H. Chen, The dynamical crossover in attractive colloidal systems, J. Chem. Phys. 139(21), 214502(2013)

[29]

F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993(2012)

[30]

P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)

[31]

F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)

[32]

L.Xu, P.Kumar, S. V.Buldyrev , S. H.Chen, P. H.Poole, F.Sciortino , and H. E.Stanley , Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition, Proc. Natl. Acad. Sci. USA102(46), 16558(2005)

[33]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, P.Baglioni, S. V. Buldyrev, S. H.Chen , and H. E.Stanley , Energy landscape in protein folding and unfolding, Proc. Natl. Acad. Sci. USA113(12), 3159(2016)

[34]

N.Bloembergen, E. M.Purcell, and R. V.Pound , Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev.73(7), 679(1948)

[35]

W. R.Carper, Direct determination of quadrupolar and dipolar NMR correlation times from spin-lattice and spin–spin relaxation rates, Concepts in Magnetic Resonance Part A11(1), 51(1999)

[36]

A.Yılmaz, M. Z. Köylü, and H.Budak, Estimation of τ value in proton NMR relaxation times of dibenzo diaza 18-crown-6 ether derivative in solution, Chem. Phys. Lett. 427(4–6), 346(2006)

[37]

F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, and H. E. Stanley, NMR spectroscopy study of local correlations in water, J. Chem. Phys. 145(21), 214503(2016)

[38]

F.Mallamace,C.Corsaro, D.Mallamace , S.Vasi, S.-H.Chen, and H. E.Stanley (submitted)

[39]

S.Cerveny, F.Mallamace, J.Swenson , M.Vogel, and L.Xu, Confined water as model of supercooled water, Chem. Rev. 116(13), 7608(2016)

[40]

H. J.Wang, X. K.Xi, A.Kleinhammes , and Y.Wu, Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption, Science322(5898), 80(2008)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (979KB)

2077

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/