Contrasting microscopic interactions determine the properties of water/methanol solutions
Carmelo Corsaro, Francesco Mallamace, Sebastiano Vasi, Sow-Hsin Chen, H. Eugene Stanley, Domenico Mallamace
Contrasting microscopic interactions determine the properties of water/methanol solutions
Herein we study the different microscopic interactions occurring in water/methanol solutions at different methanol molar fractions, using NMR spctroscopy. Temperature was found to determine which interaction dominates. It was found that the mixing between water and methanol is non-ideal because of the presence of interactions like hydrophobicity and hydrophilicity. These results indicate that the competition between hydrophilic and hydrophobic interactions is different in different thermal regions, and that the physical properties of the solution are determined by the character of the solution itself, which in turn depends on the mole fraction of methanol and on the temperature.
aqueous solutions / hydrophobicity / NMR / hydrophilicity
[1] |
J. H.Guo, Y.Luo, A.Augustsson , S.Kashtanov, J. E.Rubensson, D. K.Shuh , H.Ågren, and J.Nordgren, Molecular structure of alcohol–water mixtures, Phys. Rev. Lett. 91(15), 157401 (2003)
CrossRef
ADS
Google scholar
|
[2] |
T.Yamaguchi, K.Hidaka, and A. K.Soper , The structure of liquid methanol revisited: A neutron diffraction experiment at –80°C and+25°C, Mol. Phys. 96(8), 1159(1999)
CrossRef
ADS
Google scholar
|
[3] |
R.Ludwig, Water: From clusters to the bulk, Angew. Chem. Int. Ed. 40(10), 1808(2001)
CrossRef
ADS
Google scholar
|
[4] |
A. K.Soper, L.Dougan, J.Crain , and J. L.Finney , Excess entropy in alcohol–water solutions: A simple clustering explanation, J. Phys. Chem. B110(8), 3472(2006)
CrossRef
ADS
Google scholar
|
[5] |
Y.Zhong, G. L.Warren, and S.Patel , Thermodynamic and structural properties of methanol–water solutions using non-additive interaction models, J. Comput. Chem. 29(7), 1142(2008)
CrossRef
ADS
Google scholar
|
[6] |
F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi,S.Vasi, and H. E.Stanley , Dynamical properties of watermethanol solutions, J. Chem. Phys. 144(6), 064506(2016)
CrossRef
ADS
Google scholar
|
[7] |
R. K.Lam, J. W.Smith, and R. J.Saykally , Communication: Hydrogen bonding interactions in water–alcohol mixtures from X-ray absorption spectroscopy, J. Chem. Phys. 144(19), 191103(2016)
CrossRef
ADS
Google scholar
|
[8] |
F.Mallamace, P.Baglioni, C.Corsaro , S. H.Chen, D.Mallamace, C.Vasi , and H. E.Stanley , The influence of water on protein properties, J. Chem. Phys. 141(16), 165104(2014)
CrossRef
ADS
Google scholar
|
[9] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)
CrossRef
ADS
Google scholar
|
[10] |
R. E.Gibson, The compressions and specific volumes of aqueous solutions of resorcinol and methanol at 25° and the behavior of water in these solutions, J. Am. Chem. Soc. 57(9), 1551(1935)
CrossRef
ADS
Google scholar
|
[11] |
H. S.Frankand M. W. Evans, Free Volume and Entropy in Condensed Systems III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes, J. Chem. Phys. 13(11), 507(1945)
CrossRef
ADS
Google scholar
|
[12] |
Y.Koga, K.Nishikawa, and P.Westh , “Icebergs” or no “icebergs” in aqueous alcohols?: Compositiondependent mixing schemes, J. Phys. Chem. A108(17), 3873(2004)
CrossRef
ADS
Google scholar
|
[13] |
C.Corsaro, R.Maisano, D.Mallamace , and G.Dugo, 1H NMR study of water/methanol solutions as a function of temperature and concentration, Physica A392(4), 596(2013)
CrossRef
ADS
Google scholar
|
[14] |
W.Kauzmann, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14, 1 (1959)
CrossRef
ADS
Google scholar
|
[15] |
C.Corsaro, J.Spooren, C.Branca , N.Leone, M.Broccio, C.Kim , S. H.Chen, H. E.Stanley, and F.Mallamace , Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K<T<295 K, J. Phys. Chem. B112(34), 10449(2008)
CrossRef
ADS
Google scholar
|
[16] |
S.Dixit, J.Crain, W. C. K.Poon , J. L.Finney, and A. K. Soper, Molecular segregation observed in a concentrated alcohol water solution, Nature416(6883), 829(2002)
CrossRef
ADS
Google scholar
|
[17] |
L.Dougan, R.Hargreaves, S. P.Bates , J. L.Finney, V.Réat, A. K.Soper , and J.Crain, Segregation in aqueous methanol enhanced by cooling and compression, J. Chem. Phys. 122(17), 174514(2005)
CrossRef
ADS
Google scholar
|
[18] |
M.Požar, A. Kerasidou, B.Lovrinčević , L.Zoranić, M. Mijaković, T.Primorac, F.Sokolić , V.Teboul, and A.Perera, The microscopic structure of cold aqueous methanol mixtures, J. Chem. Phys. 145(14), 144502(2016)
CrossRef
ADS
Google scholar
|
[19] |
L.Dougan, S. P.Bates, R.Hargreaves , J. P.Fox,J.Crain, J. L.Finney , V.Reat, and A. K. Soper, Methanol-water solutions: A bi-percolating liquid mixture, J. Chem. Phys. 121(13), 6456(2004)
CrossRef
ADS
Google scholar
|
[20] |
M.Nagasaka, K.Mochizuki, V.Leloup , and N.Kosugi, Local structures of methanol-water binary solutions studied by soft X-ray absorption spectroscopy, J. Phys. Chem. B118(16), 4388(2014)
CrossRef
ADS
Google scholar
|
[21] |
H.Schott, Hydration of primary alcohols, J. Chem. Eng. Data14(2), 237(1969)
CrossRef
ADS
Google scholar
|
[22] |
Z. J.Derlacki, A. J.Easteal, A. V. J.Edge , L. A.Woolf, and Z. J. Roksandic, Diffusion coefficients of methanol and water and the mutual diffusion coefficient in methanol–water solutions at 278 and 298 K, J. Phys. Chem. 89(24), 5318(1985)
CrossRef
ADS
Google scholar
|
[23] |
S. Z.Mikhailand W. R. Kimel, Densities and viscosities of methanol–water mixtures, J. Chem. Eng. Data6(4), 533(1961)
CrossRef
ADS
Google scholar
|
[24] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141, 18C504(2014)
|
[25] |
R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid–liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)
CrossRef
ADS
Google scholar
|
[26] |
Y.Niand J. L. Skinner, Evidence for a liquid–liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line, J. Chem. Phys. 144(21), 214501(2016)
CrossRef
ADS
Google scholar
|
[27] |
F.Mallamace, C.Branca, C.Corsaro , N.Leone, J.Spooren, S. H.Chen , and H. E.Stanley , Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA107(52), 22457(2010)
CrossRef
ADS
Google scholar
|
[28] |
F.Mallamace, C.Corsaro, H. E.Stanley , D.Mallamace, and S. H. Chen, The dynamical crossover in attractive colloidal systems, J. Chem. Phys. 139(21), 214502(2013)
CrossRef
ADS
Google scholar
|
[29] |
F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993(2012)
CrossRef
ADS
Google scholar
|
[30] |
P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)
CrossRef
ADS
Google scholar
|
[31] |
F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)
CrossRef
ADS
Google scholar
|
[32] |
L.Xu, P.Kumar, S. V.Buldyrev , S. H.Chen, P. H.Poole, F.Sciortino , and H. E.Stanley , Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition, Proc. Natl. Acad. Sci. USA102(46), 16558(2005)
CrossRef
ADS
Google scholar
|
[33] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, P.Baglioni, S. V. Buldyrev, S. H.Chen , and H. E.Stanley , Energy landscape in protein folding and unfolding, Proc. Natl. Acad. Sci. USA113(12), 3159(2016)
CrossRef
ADS
Google scholar
|
[34] |
N.Bloembergen, E. M.Purcell, and R. V.Pound , Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev.73(7), 679(1948)
CrossRef
ADS
Google scholar
|
[35] |
W. R.Carper, Direct determination of quadrupolar and dipolar NMR correlation times from spin-lattice and spin–spin relaxation rates, Concepts in Magnetic Resonance Part A11(1), 51(1999)
CrossRef
ADS
Google scholar
|
[36] |
A.Yılmaz, M. Z. Köylü, and H.Budak, Estimation of τ value in proton NMR relaxation times of dibenzo diaza 18-crown-6 ether derivative in solution, Chem. Phys. Lett. 427(4–6), 346(2006)
CrossRef
ADS
Google scholar
|
[37] |
F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, and H. E. Stanley, NMR spectroscopy study of local correlations in water, J. Chem. Phys. 145(21), 214503(2016)
CrossRef
ADS
Google scholar
|
[38] |
F.Mallamace,C.Corsaro, D.Mallamace , S.Vasi, S.-H.Chen, and H. E.Stanley (submitted)
|
[39] |
S.Cerveny, F.Mallamace, J.Swenson , M.Vogel, and L.Xu, Confined water as model of supercooled water, Chem. Rev. 116(13), 7608(2016)
CrossRef
ADS
Google scholar
|
[40] |
H. J.Wang, X. K.Xi, A.Kleinhammes , and Y.Wu, Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption, Science322(5898), 80(2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |