Quantum teleportation and information splitting via four-qubit cluster state and a Bell state
Marlon David González Ramírez, Babatunde James Falaye, Guo-Hua Sun, M. Cruz-Irisson, Shi-Hai Dong
Quantum teleportation and information splitting via four-qubit cluster state and a Bell state
Quantum teleportation provides a “bodiless” way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form |φ〉1234=α|0000〉+β|1010〉+γ|1010〉-η|1010〉, as the quantum channel, where the nonzero real numbers α, β, γ, and ηsatisfy the relation |α|2+|β|2+|γ|2+|η|2=1. With the introduction of an auxiliary qubit with state |0〉, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.
teleportation / positive-operator valued measure / tripartite scheme / security attacks
[1] |
C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett.70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[2] |
W.Tittel, Quantum physics: Teleportation for two, Nature518(7540), 491(2015)
CrossRef
ADS
Google scholar
|
[3] |
X. T.Yu, Z. C.Zhang, and J.Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B23(1), 010303(2014)
CrossRef
ADS
Google scholar
|
[4] |
P. Y.Xiong, X. T.Yu, Z. C.Zhang, H. T.Zhan, and J. Y.Hua, Routing protocol for wireless quantum multihop mesh backbone network based on partially entangled GHZ state, Front. Phys.12(4), 120302(2017)
CrossRef
ADS
Google scholar
|
[5] |
X. F.Cai, X. T.Yu, L. H.Shi, and Z. C.Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys.9(5), 646(2014)
CrossRef
ADS
Google scholar
|
[6] |
P. Y.Xiong, X. T.Yu, H. T.Zhan, and Z. C.Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys.11(4), 110303(2016)
CrossRef
ADS
Google scholar
|
[7] |
H. T.Zhan, X. T.Yu, P. Y.Xiong, and Z. C.Zhang, Multi-hop teleportation based on W state and EPR pairs, Chin. Phys. B25(5), 050305(2016)
CrossRef
ADS
Google scholar
|
[8] |
H. F.Xu, M. Y.Zhang, H. Y.Guo, and J.Yang, Tripartite probabilistic and controlled teleportation of an arbitrary single-qubit state via one-dimensional fourqubit cluster type state, Int. J. Theor. Phys. 49(9), 2089(2010)
CrossRef
ADS
Google scholar
|
[9] |
A.Grace Adepoju, B.James Falaye, G. H.Sun, O.Camacho-Nieto, and S. H.Dong, Teleportation with two-dimensional electron gas formed at the interface of a GaAs heterostructure, Laser Phys.27(3), 035201(2017)
CrossRef
ADS
Google scholar
|
[10] |
M. D. G.Ramirez, B. J.Falaye, G. H.Sun, M.Cruz-Irisson, and S. H.Dong, Quantum wireless multihop teleportation via 4-qubit cluster state (in press)
|
[11] |
X. L.Wang, X. D.Cai, Z. E.Su, M. C.Chen, D.Wu, L.Li, N. L.Liu, C. Y.Lu, and J. W.Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature518(7540), 516(2015)
CrossRef
ADS
Google scholar
|
[12] |
C. A.Pérez-Delgadoand J. F.Fitzsimons, Iterated gate teleportation and blind quantum computation, Phys. Rev. Lett.114(22), 220502(2015)
CrossRef
ADS
Google scholar
|
[13] |
B. S.Shiand A.Tomita, Teleportation of an unknown state by W state, Phys. Lett. A296(4–5), 161(2002)
CrossRef
ADS
Google scholar
|
[14] |
J.Joo, Y. J.Park, S.Oh, and J.Kim, Quantum teleportation via a W state, New J. Phys.5, 136(2003)
CrossRef
ADS
Google scholar
|
[15] |
L.Roaand C.Groiseau, Probabilistic teleportation without loss of information, Phys. Rev. A91(1), 012344(2015)
CrossRef
ADS
Google scholar
|
[16] |
D.Bouwmeester, J. W.Pan, K.Mattle, M.Eibl, H.Weinfurter, and A.Zeilinger, Experimental quantum teleportation, Nature390(6660), 575(1997)
CrossRef
ADS
Google scholar
|
[17] |
Y. F.Huang, X. F.Ren, Y. S.Zhang, L. M.Duan, and G. C.Guo, Experimental teleportation of a quantum controlled-NOT gate, Phys. Rev. Lett.93(24), 240501(2004)
CrossRef
ADS
Google scholar
|
[18] |
Z.Zhao, Y. A.Chen, A. N.Zhang, T.Yang, H. J.Briegel, and J. W.Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature430(6995), 54(2004)
CrossRef
ADS
Google scholar
|
[19] |
G.Gourand N. R.Wallach, All maximally entangled four-qubit states, J. Math. Phys.51(11), 112201(2010)
CrossRef
ADS
Google scholar
|
[20] |
J. W.Pan, D.Bouwmeester, M.Daniell, H.Weinfurter, and A.Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature403(6769), 515(2000)
CrossRef
ADS
Google scholar
|
[21] |
A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J. M.Raimond, and S.Haroche, Stepby- step engineered multiparticle entanglement, Science288(5473), 2024(2000)
CrossRef
ADS
Google scholar
|
[22] |
M.Eibl, N.Kiesel, M.Bourennane, C.Kurtsiefer, and H.Weinfurter, Experimental realization of a three-qubit entangled W state, Phys. Rev. Lett.92(7), 077901(2004)
CrossRef
ADS
Google scholar
|
[23] |
H. J.Briegeland R.Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett.86(5), 910(2001)
CrossRef
ADS
Google scholar
|
[24] |
N.Kiesel, C.Schmid,U.Weber, G.Toth, O.Gühne, R.Ursin, and H.Weinfurter, Experimental analysis of a four-qubit photon cluster state, Phys. Rev. Lett.95(21), 210502(2005)
CrossRef
ADS
Google scholar
|
[25] |
O.Mandel, M.Greiner, A.Widera, T.Rom, T. W.Hänsch, and I.Bloch, Controlled collisions for multi-particle entanglement of optically trapped atoms, Nature425, 937(2003)
CrossRef
ADS
Google scholar
|
[26] |
J.Wu, Symmetric and probabilistic quantum state sharing via positive operator-valued measure, Int. J. Theor. Phys. 49(2), 324(2010)
CrossRef
ADS
Google scholar
|
[27] |
G. M.D’Ariano, P.Lo Presti, and M. F.Sacchi, Bell measurements and observables, Phys. Lett. A272(1–2), 32(2000)
CrossRef
ADS
Google scholar
|
[28] |
L. F.Hanand H.Yuan, Probabilistic and controlled teleportation of an arbitrary singlequbit state via 1D four-qubit cluster-type state and positive operatorvalued measure, Indian J. Phys. 87(8), 777(2013)
CrossRef
ADS
Google scholar
|
[29] |
S. B.Zheng, Splitting quantum information via W states, Phys. Rev. A74(5), 054303(2006)
CrossRef
ADS
Google scholar
|
[30] |
Y. Y.Nie, Y. H.Li, and Z. S.Wang, Semi-quantum information splitting using GHZ type states, Quantum Inform. Process. 12(1), 437(2013)
CrossRef
ADS
Google scholar
|
[31] |
S.Muralidharanand P. K.Panigrahi, Quantuminformation splitting using multipartite cluster states, Phys. Rev. A78(6), 062333(2008)
CrossRef
ADS
Google scholar
|
[32] |
W.Tittel, H.Zbinden, and N.Gisin, Experimental demonstration of quantum secret sharing, Phys. Rev. A63(4), 042301(2001)
CrossRef
ADS
Google scholar
|
[33] |
S.Gaertner, C.Kurtsiefer, M.Bourennane, and H.Weinfurter, Experimental demonstration of four-party quantum secret sharing, Phys. Rev. Lett.98(2), 020503(2007)
CrossRef
ADS
Google scholar
|
[34] |
B. J.Falaye, G. H.Sun, O.Camacho-Nieto, and S. H.Dong, JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels, Int. J. Quant. Inf.14(07), 1650034(2016)
CrossRef
ADS
Google scholar
|
[35] |
A. G.Adepoju, B. J.Falaye, G. H.Sun, O.Camacho- Nieto, and S. H.Dong, Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels, Phys. Lett. A381(6), 581(2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |