Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors

Yao-Wu Guo, Wei Li, Yan Chen

PDF(830 KB)
PDF(830 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127403. DOI: 10.1007/s11467-017-0683-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors

Author information +
History +

Abstract

Both impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors are investigated theoretically by solving the Bogoliubov–de Gennes equations self-consistently. At the strong scattering limit, we find that a universal state bound to the impurity can be induced for both a single nonmagnetic impurity and a single magnetic impurity. Furthermore, we find that different chiral order parameters and the corresponding supercurrents have uniform distributions around linear impurities. Calculations of the local density of states in the presence of an external magnetic field show that the intensity peak of the zero-energy Majorana mode in the vortex core can be enhanced dramatically by tuning the strength of the external magnetic field or pairing interaction.

Keywords

nonmagnetic/magnetic impurity / chiral p-wave superconductor / vortex state / Majorana mode

Cite this article

Download citation ▾
Yao-Wu Guo, Wei Li, Yan Chen. Impurity- and magnetic-field-induced quasiparticle states in chiral p-wave superconductors. Front. Phys., 2017, 12(5): 127403 https://doi.org/10.1007/s11467-017-0683-9

References

[1]
X. G.Wen and Q.Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B41(13), 9377 (1990)
CrossRef ADS Google scholar
[2]
C.Nayakand F.Wilczek, 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states, Nucl. Phys. B479(3), 529(1996)
CrossRef ADS Google scholar
[3]
S.Murakami, N.Nagaosa, and S. C.Zhang, Spin-Hall insulator, Phys. Rev. Lett.93(15), 156804(2004)
CrossRef ADS Google scholar
[4]
C. L.Kaneand E. J.Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett.95(14), 146802(2005)
CrossRef ADS Google scholar
[5]
A.Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef ADS Google scholar
[6]
D. H.Lee, G. M.Zhang, and T.Xiang, Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions, Phys. Rev. Lett.99(19), 196805(2007)
CrossRef ADS Google scholar
[7]
R. E.Prangeand S. M.Girvin, The Quantum Hall Effect, Berlin: Springer-Verlag, 1987
CrossRef ADS Google scholar
[8]
D. J.Thouless, M.Kohmoto, M. P.Nightingale, and M.denNijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405(1982)
CrossRef ADS Google scholar
[9]
V.Gurarie, L.Radzihovsky, and A. V.Andreev, Quantum phase transitions across a p-wave Feshbach resonance, Phys. Rev. Lett. 94(23), 230403(2005)
CrossRef ADS Google scholar
[10]
S.Tewari, S.Das Sarma, C.Nayak, C.Zhang, and P.Zoller, Quantum computation using vortices and Majorana zero modes of a px+ ipysuperfluid of fermionic cold atoms, Phys. Rev. Lett.98(1), 010506(2007)
CrossRef ADS Google scholar
[11]
M. Z.Hasanand C. L.Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045(2010)
CrossRef ADS Google scholar
[12]
X. L.Qiand S. C.Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057(2011)
CrossRef ADS Google scholar
[13]
G. E.Volovik, The Universe in a Helium Droplet, New York: Oxford Science Publications, 2003
[14]
A. P.Machenzieand Y.Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(657), 2003(2003)
[15]
E.Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171(1937)
CrossRef ADS Google scholar
[16]
N.Readand D.Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B61(15), 10267(2000)
CrossRef ADS Google scholar
[17]
T.Mizushima, M.Ichioka, and K.Machida, Role of the Majorana fermion and the edge mode in chiral superfluidity near a p-wave Feshbach resonance, Phys. Rev. Lett. 101(15), 150409(2008)
CrossRef ADS Google scholar
[18]
G.Mooreand N.Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B360(2–3), 362(1991)
CrossRef ADS Google scholar
[19]
M.Greiter, X. G.Wen, and F.Wilczek, Paired Hall states, Nucl. Phys. B374(3), 567(1992)
CrossRef ADS Google scholar
[20]
L.Fuand C. L.Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett.100(9), 096407(2008)
CrossRef ADS Google scholar
[21]
J. D.Sau, R. M.Lutchyn, S.Tewari, and S.Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502(2010)
CrossRef ADS Google scholar
[22]
J.Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B81(12), 125318(2010)
CrossRef ADS Google scholar
[23]
M.Matsumotoand R.Heeb, Vortex charging effect in a chiral px±ipy-wave superconductor, Phys. Rev. B65(1), 014504(2001)
CrossRef ADS Google scholar
[24]
L.Yu,Bound state in superconductors with paramagnetic impurities, Acta. Phys. Sin. 21, 75(1965)
[25]
H.Shiba, Classical spins in superconductors, Prog. Theor. Phys. 40(3), 435(1968)
CrossRef ADS Google scholar
[26]
A. V.Balatsky, I.Vekhter, and J. X.Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373(2006)
CrossRef ADS Google scholar
[27]
Y.Chenand C. S.Ting, States of local moment induced by nonmagnetic impurities in cuprate superconductors, Phys. Rev. Lett. 92(7), 077203(2004)
CrossRef ADS Google scholar
[28]
M.Takigawa, M.Ichioka, K.Kuroki, and Y.Tanaka, Electronic structure and spontaneous internal field around nonmagnetic impurities in spin-triplet chiral p- wave superconductors, Phys. Rev. B72(22), 224501(2005)
CrossRef ADS Google scholar
[29]
H.Hu, L.Jiang, H.Pu, Y.Chen, and X. J.Liu, Universal impurity-induced bound state in topological superfluids, Phys. Rev. Lett. 110(2), 020401(2013)
CrossRef ADS Google scholar
[30]
Y.Tanuma,N.Hayashi, Y.Tanaka, and A. A.Golubov, Model for vortex-core tunneling spectroscopy of chiral p- wave superconductors via odd-frequency pairing states, Phys. Rev. Lett.102(11), 117003 (2009)
CrossRef ADS Google scholar
[31]
Q.Han, Z. D.Wang, Q. H.Wang, and T.Xia, Vortex state in NaxCoO2·yH2O: px±ipy-wave versus dx2−y2±idxy-wave pairing, Phys. Rev. Lett.92(2), 027004(2004)
CrossRef ADS Google scholar
[32]
C.Caroli, P. G.de Gennes, and J.Matricon, Bound Fermion states on a vortex line in a type II superconductor, Phys. Lett.9(4), 307(1964)
CrossRef ADS Google scholar
[33]
G. E.Volovik, Superconductivity with lines of gap nodes: Density of states in the vortex, Pis’ma ZhETF58, 457(1993) [JETP Lett. 58, 469(1993)]
[34]
Y.Chenand C. S.Ting, Magnetic-field-induced spindensity wave in high-temperature superconductors, Phys. Rev. B65(18), 180513(2002)
CrossRef ADS Google scholar
[35]
G.Volovik, Fermion zero modes on vortices in chiral superconductors, JETP Lett.70(9), 609(1999)
CrossRef ADS Google scholar
[36]
D. A.Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett.86(2), 268(2001)
CrossRef ADS Google scholar
[37]
A. S.Mel’nikov, D. A.Ryzhov, and M. A.Silaev, Electronic structure and heat transport of multi-vortex configurations in mesoscopic superconductors, Phys. Rev. B78(6), 064513(2008)
CrossRef ADS Google scholar
[38]
A. S.Mel’nikovand M. A.Silaev, Inter-vortex quasiparticle tunneling and the electronic structure of multivortex configurations in type-II superconductors, JETP Lett. 83(12), 578(2006)
CrossRef ADS Google scholar
[39]
Y.Wangand A. H.MacDonald, Mixed-state quasiparticle spectrum for d-wave superconductors, Phys. Rev. B52(6), R3876(1995)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(830 KB)

Accesses

Citations

Detail

Sections
Recommended

/