Statistical properties of random clique networks

Yi-Min Ding, Jun Meng, Jing-Fang Fan, Fang-Fu Ye, Xiao-Song Chen

PDF(661 KB)
PDF(661 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128909. DOI: 10.1007/s11467-017-0682-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Statistical properties of random clique networks

Author information +
History +

Abstract

In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

Keywords

complex networks / random clique networks / motifs / communicability

Cite this article

Download citation ▾
Yi-Min Ding, Jun Meng, Jing-Fang Fan, Fang-Fu Ye, Xiao-Song Chen. Statistical properties of random clique networks. Front. Phys., 2017, 12(5): 128909 https://doi.org/10.1007/s11467-017-0682-x

References

[1]
P.Erdös and A.Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)
[2]
D. J.Wattsand S. H.Strogatz, Collective dynamics of small-world networks, Nature393(6684), 440(1998)
CrossRef ADS Google scholar
[3]
A. L.Barabásiand R.Albert, Emergence of scaling in random networks, Science286(5439), 509(1999)
CrossRef ADS Google scholar
[4]
A. L.Barabási, R.Albert, and H.Jeong, Mean-field theory for scale-free random networks, Physica A272(1–2), 173(1999)
CrossRef ADS Google scholar
[5]
S. H.Strogatz, Exploring complex networks, Nature410(6825), 268(2001)
CrossRef ADS Google scholar
[6]
R.Albertand A. L.Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1), 47(2002)
CrossRef ADS Google scholar
[7]
M. E. J.Newman, The structure and function of complex networks, SIAM Rev. 45(2), 167(2003)
CrossRef ADS Google scholar
[8]
S.Boccaletti, V.Latora, Y.Moreno, M.Chavez, and D.Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175(2006)
CrossRef ADS Google scholar
[9]
R.Milo, S.Shen-Orr, S.Itzkovitz, N.Kashtan, D.Chklovskii, and U.Alon, Network motifs: Simple building blocks of complex networks, Science298(5594), 824(2002)
CrossRef ADS Google scholar
[10]
E.Ravaszand A. L.Barabási, Hierarchical organization in complex networks, Phys. Rev. E67(2), 026112(2003)
CrossRef ADS Google scholar
[11]
R.Milo, S.Itzkovitz, N.Kashtan, R.Levitt, S.Shen Orr, I.Ayzenshtat, M.Sheffer, and U.Alon, Superfamilies of evolved and designed networks, Science303(5663), 1538(2004)
CrossRef ADS Google scholar
[12]
A.Clauset, C.Moore, and M. E. J.Newman, Hierarchical structure and the prediction of missing links in network s, Nature453(7191), 98(2008)
CrossRef ADS Google scholar
[13]
M. E. J.Newman, Communities, modules and largescale structure in networks, Nat. Phys. 8, 25(2012)
[14]
Bollobás, B.Random Graphs, Academic Press, London, 1985
[15]
G.Palla, I.Derenyi, I.Farkas, and T.Vicsek, Uncovering the overlapping community structure of complexnet works in nature and society, Nature435(7043), 814(2005)
CrossRef ADS Google scholar
[16]
I.Derényi, G.Palla, and T.Vicsek, Clique percolation in random networks, Phys. Rev. Lett. 94(16), 160202(2005)
CrossRef ADS Google scholar
[17]
K.Takemotoand C.Oosawa, Evolving networks by merging cliques, Phys. Rev. E72(4), 046116(2005)
CrossRef ADS Google scholar
[18]
W. K.Xiao, J.Ren, F.Qi, Z. W.Song, M. X.Zhu, H. F.Yang, H. Y.Jin, and B. H.Wang, Empirical study on clique-degree distribution of networks, Phys. Rev. E76, 037102(2007)
CrossRef ADS Google scholar
[19]
R.Lambiotteand M.Ausloos, Collaborative tagging as a tripartite network, Lect. Notes Comput. Sci. 3993, 1114(2006)
CrossRef ADS Google scholar
[20]
G.Ghoshal, V.Zlatić, G.Caldarelli, and M. E. J.Newman, Random hypergraphs and their applications, Phys. Rev. E79(6), 066118(2009)
CrossRef ADS Google scholar
[21]
V.Zlatić, G.Ghoshal, and G.Caldarelli, Hypergraph topological quantities for tagged social networks, Phys. Rev. E80(3), 036118(2009)
CrossRef ADS Google scholar
[22]
M. E. J.Newman, Random graphs with clustering, Phys. Rev. Lett. 103(5), 058701(2009)
CrossRef ADS Google scholar
[23]
B.Karrerand M. E. J.Newman, Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E82(6), 066118(2010)
CrossRef ADS Google scholar
[24]
Y.Ding, B.Zhou, and X.Chen, Hybrid evolving clique networks and their communicability, Physica A407, 198(2014)
CrossRef ADS Google scholar
[25]
N.Slater, R.Itzchack, and Y.Louzoun, Mid size cliques are more common in real world networks than triangles, Netw. Sci. 2(03), 387(2014)
CrossRef ADS Google scholar
[26]
F.Fangand X.Chen, General clique percolation in random networks, Europhys. Lett. 107(2), 28005(2014)
CrossRef ADS Google scholar
[27]
H.Shen, X.Cheng, K.Cai, and M. B.Hu, Detect overlapping and hierarchical community structure in networks, Physica A338(8), 1706(2009)
CrossRef ADS Google scholar
[28]
M. E. J.Newman, Scientific collaboration networks (I): Network construction and fundamental results, Phys. Rev. E64(1), 016131(2001)
CrossRef ADS Google scholar
[29]
A. L.Barabási, H.Jeong,Z.Neda, E.Ravasz, A.Schubert, and T.Vicsek, Evolution of the social network of scientific collaborations, Physica A311(3–4), 590(2002)
CrossRef ADS Google scholar
[30]
S.Mei, R.Quax, D. A. M. C.van de Vijver, Y.Zhu, and P. M. A.Sloot, Increasing risk behaviour can outweigh the benefits of antiretroviral drug treatment on the HIV incidence among men-having-sex-with-men in Amsterdam, BMC Infect. Dis. 11(1), 118(2011)
CrossRef ADS Google scholar
[31]
P.Colomer-de-Simón, M. Á.Serrano, M. G.Beiró, J. I.Alvarez-Hamelin, and M.Boguñá, Deciphering the global organization of clustering in real complex networks, Sci. Rep. 3(1), 2517(2013)
CrossRef ADS Google scholar
[32]
Y.Ding, Z.Ding, and C.Yang, The network model of urban subway networks with community structure, Acta Phys. Sin. 62(9), 098901(2013)
[33]
H.Jeong,S.Mason, A. L.Barabasi, and Z. N.Oltvai, Lethality and centrality in protein networks, Nature411(6833), 41(2001)
CrossRef ADS Google scholar
[34]
D.van Dijk, G.Ertaylan, C. A. B.Boucher, and P. M. A.Sloot, Identifyingpotential survival strategies of HIV-1 through virus-host protein interaction networks, BMC Syst. Biol. 4(1), 96(2010)
CrossRef ADS Google scholar
[35]
A.Czaplicka, J. A.Holyst, and P. M. A.Sloot, Noise enhances information transfer in hierarchical networks, Sci. Rep. 3, 1223(2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(661 KB)

Accesses

Citations

Detail

Sections
Recommended

/