Gravitational field around black hole induces photonic spin–orbit interaction that twists light

Deng Pan , Hong-Xing Xu

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128102

PDF (1695KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128102 DOI: 10.1007/s11467-017-0679-5
RESEARCH ARTICLE

Gravitational field around black hole induces photonic spin–orbit interaction that twists light

Author information +
History +
PDF (1695KB)

Abstract

The spin–orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons’ spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.

Keywords

spin–orbit interation / black hole / gravitational lens / optical angular momentum

Cite this article

Download citation ▾
Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light. Front. Phys., 2017, 12(5): 128102 DOI:10.1007/s11467-017-0679-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D.Pan, H.Wei, L.Gao, and H.Xu, Strong spin–orbit interaction of light in plasmonic nanostructures and nanocircuits, Phys. Rev. Lett.117(16), 166803 (2016)

[2]

P. J.Wang and J.Zhang, Spin–orbit coupling in Bose– Einstein condensate and degenerate Fermi gases, Front. Phys.9(5), 598 (2014)

[3]

J. K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys.11(3), 118102 (2016)

[4]

M.Onoda, S.Murakami, and N.Nagaosa, Hall effect of light, Phys. Rev. Lett.93(8), 083901 (2004)

[5]

Y.Gorodetski, A.Niv, V.Kleiner, and E.Hasman, Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett.101(4), 043903 (2008)

[6]

K. Y.Bliokh, Y.Gorodetski, V.Kleiner, and E.Hasman, Coriolis effect in optics: Unified geometric phase and spin-Hall effect, Phys. Rev. Lett.101(3), 030404 (2008)

[7]

S. Y.Lee, I. M.Lee, J.Park, S.Oh, W.Lee, K. Y.Kim, and B.Lee, Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett.108(21), 213907 (2012)

[8]

F. J.Rodríguez-Fortuño, G.Marino, P.Ginzburg, D.O’Connor, A.Martínez, G. A.Wurtz, and A. V.Zayats, Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science340(6130), 328 (2013)

[9]

J.Lin, J. P. B.Mueller, Q.Wang, G.Yuan, N.Antoniou, X. C.Yuan, and F.Capasso, Polarizationcontrolled tunable directional coupling of surface plasmon polaritons, Science340(6130), 331 (2013)

[10]

X.Yin, Z.Ye, J.Rho, Y.Wang, and X.Zhang, Photonic spin Hall effect at metasurfaces, Science339(6126), 1405 (2013)

[11]

N.Shitrit, I.Yulevich, E.Maguid, D.Ozeri, D.Veksler, V.Kleiner, and E.Hasman, Spin–optical metamaterial route to spin-controlled photonics, Science340(6133), 724 (2013)

[12]

J.Petersen, J.Volz, and A.Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin–orbit interaction of light, Science346(6205), 67 (2014)

[13]

D.O’Connor, P.Ginzburg, F. J.Rodríguez-Fortuño, G. A.Wurtz, and A. V.Zayats, Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun.5, 5327 (2014)

[14]

J. B.Pendry, Controlling electromagnetic fields, Science312(5781), 1780 (2006)

[15]

U.Leonhardt, Optical conformal mapping, Science312(5781), 1777 (2006)

[16]

D. A.Genov, S.Zhang, and X.Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys.5(9), 687 (2009)

[17]

W. X.Jiang and B. G.Cai, An electromagnetic black hole made of metamaterials, arXiv: 0910.2159 (2009)

[18]

C.Sheng, H.Liu, Y.Wang, S. N.Zhu, and D. A.Genov, Trapping light by mimicking gravitational lensing, Nat. Photonics7(11), 902 (2013)

[19]

C.Sheng, R.Bekenstein, H.Liu, S.Zhu, and M.Segev, Wavefront shaping through emulated curved space in waveguide settings, Nat. Commun.7, 10747 (2016)

[20]

P.Gosselin, A.Bérard, and H.Mohrbach, Spin Hall effect of photons in a static gravitational field, Phys. Rev. D75(8), 084035 (2007)

[21]

Y. N.Obukhov, Spin, gravity, and inertia, Phys. Rev. Lett.86(2), 192 (2001)

[22]

S.Dimopoulos and G.Landsberg, Black holes at the large hadron collider, Phys. Rev. Lett.87(16), 161602 (2001)

[23]

S. B.Giddings and S.Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D65(5), 056010 (2002)

[24]

D.Garoli, P.Zilio, F.De Angelis, and Y.Gorodetski, Helicity locking in light emitted from a plasmonic nanotaper, arXiv: 1703.02278 (2017)

[25]

P. A.Curran, Y.Fan, J. P. U.Fynbo, J.Gorosabel, A.Gomboc, D.Götz, J.Hjorth, Z. P.Jin, S.Kobayashi, C.Kouveliotou, C.Mundell, P. T.O’Brien, E.Pian, A.Rowlinson, D. M.Russell, R.Salvaterra, S.di Serego Alighieri, G.Tagliaferri, S. D.Vergani, J.Elliott, C.Fariña, O. E.Hartoog, R.Karjalainen, S.Klose, F.Knust, A. J.Levan, P.Schady, V.Sudilovsky, and R.Willingale, Circular polarization in the optical afterglow of GRB 121024A, Nature509 (7499), 201 (2014)

RIGHTS & PERMISSIONS

The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

AI Summary AI Mindmap
PDF (1695KB)

784

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/