Gravitational field around black hole induces photonic spin–orbit interaction that twists light

Deng Pan, Hong-Xing Xu

PDF(1695 KB)
PDF(1695 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128102. DOI: 10.1007/s11467-017-0679-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Gravitational field around black hole induces photonic spin–orbit interaction that twists light

Author information +
History +

Abstract

The spin–orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons’ spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.

Keywords

spin–orbit interation / black hole / gravitational lens / optical angular momentum

Cite this article

Download citation ▾
Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light. Front. Phys., 2017, 12(5): 128102 https://doi.org/10.1007/s11467-017-0679-5

References

[1]
D.Pan, H.Wei, L.Gao, and H.Xu, Strong spin–orbit interaction of light in plasmonic nanostructures and nanocircuits, Phys. Rev. Lett.117(16), 166803 (2016)
CrossRef ADS Google scholar
[2]
P. J.Wang and J.Zhang, Spin–orbit coupling in Bose– Einstein condensate and degenerate Fermi gases, Front. Phys.9(5), 598 (2014)
CrossRef ADS Google scholar
[3]
J. K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys.11(3), 118102 (2016)
CrossRef ADS Google scholar
[4]
M.Onoda, S.Murakami, and N.Nagaosa, Hall effect of light, Phys. Rev. Lett.93(8), 083901 (2004)
CrossRef ADS Google scholar
[5]
Y.Gorodetski, A.Niv, V.Kleiner, and E.Hasman, Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett.101(4), 043903 (2008)
CrossRef ADS Google scholar
[6]
K. Y.Bliokh, Y.Gorodetski, V.Kleiner, and E.Hasman, Coriolis effect in optics: Unified geometric phase and spin-Hall effect, Phys. Rev. Lett.101(3), 030404 (2008)
CrossRef ADS Google scholar
[7]
S. Y.Lee, I. M.Lee, J.Park, S.Oh, W.Lee, K. Y.Kim, and B.Lee, Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett.108(21), 213907 (2012)
CrossRef ADS Google scholar
[8]
F. J.Rodríguez-Fortuño, G.Marino, P.Ginzburg, D.O’Connor, A.Martínez, G. A.Wurtz, and A. V.Zayats, Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science340(6130), 328 (2013)
CrossRef ADS Google scholar
[9]
J.Lin, J. P. B.Mueller, Q.Wang, G.Yuan, N.Antoniou, X. C.Yuan, and F.Capasso, Polarizationcontrolled tunable directional coupling of surface plasmon polaritons, Science340(6130), 331 (2013)
CrossRef ADS Google scholar
[10]
X.Yin, Z.Ye, J.Rho, Y.Wang, and X.Zhang, Photonic spin Hall effect at metasurfaces, Science339(6126), 1405 (2013)
CrossRef ADS Google scholar
[11]
N.Shitrit, I.Yulevich, E.Maguid, D.Ozeri, D.Veksler, V.Kleiner, and E.Hasman, Spin–optical metamaterial route to spin-controlled photonics, Science340(6133), 724 (2013)
CrossRef ADS Google scholar
[12]
J.Petersen, J.Volz, and A.Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin–orbit interaction of light, Science346(6205), 67 (2014)
CrossRef ADS Google scholar
[13]
D.O’Connor, P.Ginzburg, F. J.Rodríguez-Fortuño, G. A.Wurtz, and A. V.Zayats, Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun.5, 5327 (2014)
CrossRef ADS Google scholar
[14]
J. B.Pendry, Controlling electromagnetic fields, Science312(5781), 1780 (2006)
CrossRef ADS Google scholar
[15]
U.Leonhardt, Optical conformal mapping, Science312(5781), 1777 (2006)
CrossRef ADS Google scholar
[16]
D. A.Genov, S.Zhang, and X.Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys.5(9), 687 (2009)
[17]
W. X.Jiang and B. G.Cai, An electromagnetic black hole made of metamaterials, arXiv: 0910.2159 (2009)
[18]
C.Sheng, H.Liu, Y.Wang, S. N.Zhu, and D. A.Genov, Trapping light by mimicking gravitational lensing, Nat. Photonics7(11), 902 (2013)
CrossRef ADS Google scholar
[19]
C.Sheng, R.Bekenstein, H.Liu, S.Zhu, and M.Segev, Wavefront shaping through emulated curved space in waveguide settings, Nat. Commun.7, 10747 (2016)
CrossRef ADS Google scholar
[20]
P.Gosselin, A.Bérard, and H.Mohrbach, Spin Hall effect of photons in a static gravitational field, Phys. Rev. D75(8), 084035 (2007)
CrossRef ADS Google scholar
[21]
Y. N.Obukhov, Spin, gravity, and inertia, Phys. Rev. Lett.86(2), 192 (2001)
CrossRef ADS Google scholar
[22]
S.Dimopoulos and G.Landsberg, Black holes at the large hadron collider, Phys. Rev. Lett.87(16), 161602 (2001)
CrossRef ADS Google scholar
[23]
S. B.Giddings and S.Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D65(5), 056010 (2002)
CrossRef ADS Google scholar
[24]
D.Garoli, P.Zilio, F.De Angelis, and Y.Gorodetski, Helicity locking in light emitted from a plasmonic nanotaper, arXiv: 1703.02278 (2017)
[25]
P. A.Curran, Y.Fan, J. P. U.Fynbo, J.Gorosabel, A.Gomboc, D.Götz, J.Hjorth, Z. P.Jin, S.Kobayashi, C.Kouveliotou, C.Mundell, P. T.O’Brien, E.Pian, A.Rowlinson, D. M.Russell, R.Salvaterra, S.di Serego Alighieri, G.Tagliaferri, S. D.Vergani, J.Elliott, C.Fariña, O. E.Hartoog, R.Karjalainen, S.Klose, F.Knust, A. J.Levan, P.Schady, V.Sudilovsky, and R.Willingale, Circular polarization in the optical afterglow of GRB 121024A, Nature509 (7499), 201 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(1695 KB)

Accesses

Citations

Detail

Sections
Recommended

/