Gravitational field around black hole induces photonic spin–orbit interaction that twists light
Deng Pan, Hong-Xing Xu
Gravitational field around black hole induces photonic spin–orbit interaction that twists light
The spin–orbit interaction (SOI) of light has been intensively studied in nanophotonics because it enables sensitive control of photons’ spin degree of freedom and thereby the trajectories of the photons, which is useful for applications such as signal encoding and routing. A recent study [Phys. Rev. Lett. 117, 166803 (2016)] showed that the SOI of photons manifests in the presence of a gradient in the permittivity of the medium through which the photons propagate; this enhances the scattering of circularly polarized light and results in the photons propagating along twisted trajectories. Here we theoretically predict that, because of the equivalence between an inhomogeneous dielectric medium and a gravitational field demonstrated in transformation optics, a significant SOI is induced onto circularly polarized light passing by the gravitational lens of a black hole. This leads to: i) the photons to propagate along chiral trajectories if the size of the black hole is smaller than the wavelength of the incident photons; ii) the resulting image of the gravitational lens to manifest an azimuthal rotation because of these chiral trajectories. The findings open for a way to probe for and discover subwavelength-size black holes using circularly polarized light.
spin–orbit interation / black hole / gravitational lens / optical angular momentum
[1] |
D.Pan, H.Wei, L.Gao, and H.Xu, Strong spin–orbit interaction of light in plasmonic nanostructures and nanocircuits, Phys. Rev. Lett.117(16), 166803 (2016)
CrossRef
ADS
Google scholar
|
[2] |
P. J.Wang and J.Zhang, Spin–orbit coupling in Bose– Einstein condensate and degenerate Fermi gases, Front. Phys.9(5), 598 (2014)
CrossRef
ADS
Google scholar
|
[3] |
J. K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys.11(3), 118102 (2016)
CrossRef
ADS
Google scholar
|
[4] |
M.Onoda, S.Murakami, and N.Nagaosa, Hall effect of light, Phys. Rev. Lett.93(8), 083901 (2004)
CrossRef
ADS
Google scholar
|
[5] |
Y.Gorodetski, A.Niv, V.Kleiner, and E.Hasman, Observation of the spin-based plasmonic effect in nanoscale structures, Phys. Rev. Lett.101(4), 043903 (2008)
CrossRef
ADS
Google scholar
|
[6] |
K. Y.Bliokh, Y.Gorodetski, V.Kleiner, and E.Hasman, Coriolis effect in optics: Unified geometric phase and spin-Hall effect, Phys. Rev. Lett.101(3), 030404 (2008)
CrossRef
ADS
Google scholar
|
[7] |
S. Y.Lee, I. M.Lee, J.Park, S.Oh, W.Lee, K. Y.Kim, and B.Lee, Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett.108(21), 213907 (2012)
CrossRef
ADS
Google scholar
|
[8] |
F. J.Rodríguez-Fortuño, G.Marino, P.Ginzburg, D.O’Connor, A.Martínez, G. A.Wurtz, and A. V.Zayats, Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science340(6130), 328 (2013)
CrossRef
ADS
Google scholar
|
[9] |
J.Lin, J. P. B.Mueller, Q.Wang, G.Yuan, N.Antoniou, X. C.Yuan, and F.Capasso, Polarizationcontrolled tunable directional coupling of surface plasmon polaritons, Science340(6130), 331 (2013)
CrossRef
ADS
Google scholar
|
[10] |
X.Yin, Z.Ye, J.Rho, Y.Wang, and X.Zhang, Photonic spin Hall effect at metasurfaces, Science339(6126), 1405 (2013)
CrossRef
ADS
Google scholar
|
[11] |
N.Shitrit, I.Yulevich, E.Maguid, D.Ozeri, D.Veksler, V.Kleiner, and E.Hasman, Spin–optical metamaterial route to spin-controlled photonics, Science340(6133), 724 (2013)
CrossRef
ADS
Google scholar
|
[12] |
J.Petersen, J.Volz, and A.Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin–orbit interaction of light, Science346(6205), 67 (2014)
CrossRef
ADS
Google scholar
|
[13] |
D.O’Connor, P.Ginzburg, F. J.Rodríguez-Fortuño, G. A.Wurtz, and A. V.Zayats, Spin–orbit coupling in surface plasmon scattering by nanostructures, Nat. Commun.5, 5327 (2014)
CrossRef
ADS
Google scholar
|
[14] |
J. B.Pendry, Controlling electromagnetic fields, Science312(5781), 1780 (2006)
CrossRef
ADS
Google scholar
|
[15] |
U.Leonhardt, Optical conformal mapping, Science312(5781), 1777 (2006)
CrossRef
ADS
Google scholar
|
[16] |
D. A.Genov, S.Zhang, and X.Zhang, Mimicking celestial mechanics in metamaterials, Nat. Phys.5(9), 687 (2009)
|
[17] |
W. X.Jiang and B. G.Cai, An electromagnetic black hole made of metamaterials, arXiv: 0910.2159 (2009)
|
[18] |
C.Sheng, H.Liu, Y.Wang, S. N.Zhu, and D. A.Genov, Trapping light by mimicking gravitational lensing, Nat. Photonics7(11), 902 (2013)
CrossRef
ADS
Google scholar
|
[19] |
C.Sheng, R.Bekenstein, H.Liu, S.Zhu, and M.Segev, Wavefront shaping through emulated curved space in waveguide settings, Nat. Commun.7, 10747 (2016)
CrossRef
ADS
Google scholar
|
[20] |
P.Gosselin, A.Bérard, and H.Mohrbach, Spin Hall effect of photons in a static gravitational field, Phys. Rev. D75(8), 084035 (2007)
CrossRef
ADS
Google scholar
|
[21] |
Y. N.Obukhov, Spin, gravity, and inertia, Phys. Rev. Lett.86(2), 192 (2001)
CrossRef
ADS
Google scholar
|
[22] |
S.Dimopoulos and G.Landsberg, Black holes at the large hadron collider, Phys. Rev. Lett.87(16), 161602 (2001)
CrossRef
ADS
Google scholar
|
[23] |
S. B.Giddings and S.Thomas, High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D65(5), 056010 (2002)
CrossRef
ADS
Google scholar
|
[24] |
D.Garoli, P.Zilio, F.De Angelis, and Y.Gorodetski, Helicity locking in light emitted from a plasmonic nanotaper, arXiv: 1703.02278 (2017)
|
[25] |
P. A.Curran, Y.Fan, J. P. U.Fynbo, J.Gorosabel, A.Gomboc, D.Götz, J.Hjorth, Z. P.Jin, S.Kobayashi, C.Kouveliotou, C.Mundell, P. T.O’Brien, E.Pian, A.Rowlinson, D. M.Russell, R.Salvaterra, S.di Serego Alighieri, G.Tagliaferri, S. D.Vergani, J.Elliott, C.Fariña, O. E.Hartoog, R.Karjalainen, S.Klose, F.Knust, A. J.Levan, P.Schady, V.Sudilovsky, and R.Willingale, Circular polarization in the optical afterglow of GRB 121024A, Nature509 (7499), 201 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |