Morphological transformations of diblock copolymers in binary solvents: A simulation study

Zheng Wang, Yuhua Yin, Run Jiang, Baohui Li

PDF(23309 KB)
PDF(23309 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 128201. DOI: 10.1007/s11467-017-0678-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Morphological transformations of diblock copolymers in binary solvents: A simulation study

Author information +
History +

Abstract

Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent CS2, the concentration of the polymer Cp, and the polymer–solvent interactions εij (i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of Cp, CS2, and/or εAS2. The copolymer morphological sequence from dissolved→sphere→rod→ring/cage→vesicle is obtained upon increasing CS2 at a fixed Cp. This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction εBS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing Cp or with decreasing CS2, but remains almost unchanged with variations in εAS2.

Keywords

self-assembly / diblock copolymers / binary solvents / morphological transformation / simulated annealing

Cite this article

Download citation ▾
Zheng Wang, Yuhua Yin, Run Jiang, Baohui Li. Morphological transformations of diblock copolymers in binary solvents: A simulation study. Front. Phys., 2017, 12(6): 128201 https://doi.org/10.1007/s11467-017-0678-6

References

[1]
S. A.Jenekhe and X. L.Chen, Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes, Science279(5358), 1903 (1998)
CrossRef ADS Google scholar
[2]
R.Stoenescu, A.Graff, and W.Meier, Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane protein, Macromol. Biosci.4(10), 930 (2004)
CrossRef ADS Google scholar
[3]
R.Stoenescu and W.Meier, Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers, Chem. Commun.24(24), 3016 (2002)
CrossRef ADS Google scholar
[4]
Y. F.Zhou and D. Y.Yan, Real-time membrane fusion of giant polymer vesicles, J. Am. Chem. Soc.127(30), 10468 (2005)
CrossRef ADS Google scholar
[5]
Y. F.Zhou and D. Y.Yan, Real-time membrane fission of giant polymer vesicles, Angew. Chem. Int. Ed.44(21), 3223 (2005)
CrossRef ADS Google scholar
[6]
R.Savic, L. B.Luo, A.Eisenberg, and D.Maysinger, Micellar nanocontainers distribute to defined cytoplasmic organelles, Science300(5619), 615 (2003)
CrossRef ADS Google scholar
[7]
C.Allen, D.Maysinger, and A.Eisenberg, Nanoengineering block copolymer aggregates for drug delivery,Colloids Surf. B Biointerfaces16(1–4), 3 (1999)
CrossRef ADS Google scholar
[8]
L. F.Zhang and A.Eisenberg, Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers, Science268(5218), 1728 (1995)
CrossRef ADS Google scholar
[9]
X. T.Shuai, H.Ai, N.Nasongkla, S.Kim, and J. M.Gao, Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, J. Control. Release98(3), 415 (2004)
CrossRef ADS Google scholar
[10]
H.Lomas, I.Canton, S.MacNeil, J.Du, S. P.Armes, A. J.Ryan, A. L.Lewis, and G.Battaglia, Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery, Adv. Mater.19(23), 4238 (2007)
CrossRef ADS Google scholar
[11]
X. B.Xiong, H.Uludag, and A.Lavasanifar, Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery, Biomaterials30(2), 242 (2009)
CrossRef ADS Google scholar
[12]
A.Blanazs, S. P.Armes, and A. J.Ryan, Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications, Macromol. Rapid Commun.30(4–5), 267 (2009)
CrossRef ADS Google scholar
[13]
K. J.Hanley, T. P.Lodge, and C. I.Huang, Phase behavior of a block copolymer in solvents of varying selectivity, Macromolecules33(16), 5918 (2000)
CrossRef ADS Google scholar
[14]
C.Lai, W. B.Russel, and R. A.Register, Phase behavior of Styrene–Isoprene diblock copolymers in strongly selective solvents, Macromolecules35(3), 841 (2002)
CrossRef ADS Google scholar
[15]
T. P.Lodge, B.Pudil, and K. J.Hanley, The full phase behavior for block copolymers in solvents of varying selectivity, Macromolecules35(12), 4707 (2002)
CrossRef ADS Google scholar
[16]
B.Yu, B.Li, P.Sun, T.Chen, Q.Jin, D.Ding, and A. C.Shi, Cylinder-gyroid-lamella transitions in diblock copolymer solutions: A simulated annealing study, J. Chem. Phys.123(23), 234902 (2005)
CrossRef ADS Google scholar
[17]
T.Suo, D.Yan, S.Yang, and A. C.Shi, A theoretical study of phase behaviors for diblock copolymers in selective solvents, Macromolecules42(17), 6791 (2009)
CrossRef ADS Google scholar
[18]
M.Antonietti and S.Forster, Vesicles and liposomes: A self-assembly principle beyond lipids, Adv. Mater.15(16), 1323 (2003)
CrossRef ADS Google scholar
[19]
D. J.Pochan, Z. Y.Chen, and H. G.Cui, Toroidal triblock copolymer assemblies, Science306(5693), 94 (2004)
CrossRef ADS Google scholar
[20]
X. S.Wang, G.Guerin, H.Wang, Y. S.Wang, I.Manners, and M. A.Winnik, Cylindrical block copolymer micelles and co-micelles of controlled length and architecture, Science317(5838), 644 (2007)
CrossRef ADS Google scholar
[21]
Y. Y.Mai and A.Eisenberg, Self-assembly of block copolymers, Chem. Soc. Rev.41(18), 5969 (2012)
CrossRef ADS Google scholar
[22]
H. W.Shen and A.Eisenberg, Morphological phase diagram for a ternary system of block copolymer PS310-b- PAA52/Dioxane/H2O, J. Phys. Chem. B103(44), 9473 (1999)
CrossRef ADS Google scholar
[23]
B.Du, A.Mei, K.Yin, Q.Zhang, J.Xu, and Z.Fan, Vesicle formation of PLAx–PEG44 diblock copolymers, Macromolecules42(21), 8477 (2009)
CrossRef ADS Google scholar
[24]
H.Huang, B.Chung, J.Jung, H. W.Park, and T.Chang, Toroidal micelles of uniform size from diblock copolymers, Angew. Chem. Int. Ed.48(25), 4594 (2009)
CrossRef ADS Google scholar
[25]
A. G.Denkova, P. H. H.Bomans, M.O.Coppens, N. A. J. M.Sommerdijk, and E.Mendes, Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: The role of solvent–solvent correlations, Soft Matter7(14), 6622 (2011)
CrossRef ADS Google scholar
[26]
S.Zhong, H.Cui, Z.Chen, K. L.Wooley, and D. J.Pochan, Helix self-assembly through the coiling of cylindrical micelles, Soft Matter4(1), 90 (2008)
CrossRef ADS Google scholar
[27]
D. H.Han, X. Y.Li, S.Hong, H.Jinnai, and G. J.Liu, Morphological transition of triblock copolymer cylindrical micelles responding to solvent change, Soft Matter8(7), 2144 (2012)
CrossRef ADS Google scholar
[28]
B. E.McKenzie, J. F.de Visser, H.Friedrich, M. J. M.Wirix, P. H. H.Bomans, G.de With, S. J.Holder, and N. A. J. M.Sommerdijk, Bicontinuous nanospheres from simple amorphous amphiphilic diblock copolymers, Macromolecules46(24), 9845 (2013)
CrossRef ADS Google scholar
[29]
P.Sun, Y.Yin, B.Li, T.Chen, Q.Jin, D.Ding, and A.C.Shi, Simulated annealing study of morphological transitions of diblock copolymers in solution, J. Chem. Phys.122(20), 204905 (2005)
CrossRef ADS Google scholar
[30]
R.Wang, Z.Jiang, and G.Xue, Excluded volume effect on the self-assembly of amphiphilic AB diblock copolymer in dilute solution, Polymer52(10), 2361 (2011)
CrossRef ADS Google scholar
[31]
J.Cui and W.Jiang, Vesicle formation and microphase behavior of amphiphilic ABC triblock copolymers in selective solvents: A Monte Carlo study, Langmuir26(16), 13672 (2010)
CrossRef ADS Google scholar
[32]
J.Cui and W.Jiang, Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: A Monte Carlo study, Langmuir27(16), 10141 (2011)
CrossRef ADS Google scholar
[33]
J.Cui, Y. Y.Han, and W.Jiang, Asymmetric vesicle constructed by AB/CB diblock copolymer mixture and its behavior: A Monte Carlo study, Langmuir30(30), 9219 (2014)
CrossRef ADS Google scholar
[34]
P. T.He, X. J.Li, M. G.Deng, T.Chen, and H. J.Liang, Complex micelles from the self-assembly of coilrod- coil amphiphilic triblock copolymers in selective solvents, Soft Matter6(7), 1539 (2010)
CrossRef ADS Google scholar
[35]
W.Kong, B.Li, Q.Jin, D.Ding, and A. C.Shi, Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC Miktoarm star terpolymers, J. Am. Chem. Soc.131(24), 8503 (2009)
CrossRef ADS Google scholar
[36]
C. I.Huang and Y. C.Hsu, Effects of solvent immiscibility on the phase behavior and microstructural length scales of a diblock copolymer in the presence of two solvents, Phys. Rev. E74(5), 051802 (2006)
CrossRef ADS Google scholar
[37]
I.Carmesin and K.Kremer, The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial dimensions, Macromolecules21(9), 2819 (1988)
CrossRef ADS Google scholar
[38]
R. G.Larson, Self-assembly of surfactant liquid crystalline phases by Monte Carlo simulation, J. Chem. Phys.91(4), 2479 (1989)
CrossRef ADS Google scholar
[39]
R. G.Larson, Monte Carlo simulation of microstructural transitions in surfactant systems, J. Chem. Phys.96(11), 7904 (1992)
CrossRef ADS Google scholar
[40]
N.Metropolis, A. W.Rosenbluth, M. N.Rosenbluth, A. H.Teller, andE.Teller, Equation of state calculations by fast computing machines, J. Chem. Phys.21(6), 1087 (1953)
CrossRef ADS Google scholar
[41]
X.He and F.Schmid, Spontaneous formation of complex micelles from a homogeneous solution, Phys. Rev. Lett.100(13), 137802 (2008)
CrossRef ADS Google scholar
[42]
B.Xia, W.Li, and F.Qiu, Self-assembling behaviors of symmetric diblock copolymers in C homopolymers, Acta Chimi. Sin. 72(1), 30 (2014)
CrossRef ADS Google scholar
[43]
H.Du, J.Zhu, and W.Jiang, Study of controllable aggregation morphology of ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property, J. Phys. Chem. B111(8), 1938 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(23309 KB)

Accesses

Citations

Detail

Sections
Recommended

/