Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction

Jian-Lei Ge, Tian-Ru Wu, Ming Gao, Zhan-Bin Bai, Lu Cao, Xue-Feng Wang, Yu-Yuan Qin, Feng-Qi Song

PDF(2114 KB)
PDF(2114 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127210. DOI: 10.1007/s11467-017-0677-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction

Author information +
History +

Abstract

Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was suppressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCann’s formula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott–Yafet spin relaxation and Kane–Mele type spin–orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after the second deposition.

Keywords

graphene / cluster deposition / weak localization / spin–orbit coupling

Cite this article

Download citation ▾
Jian-Lei Ge, Tian-Ru Wu, Ming Gao, Zhan-Bin Bai, Lu Cao, Xue-Feng Wang, Yu-Yuan Qin, Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction. Front. Phys., 2017, 12(4): 127210 https://doi.org/10.1007/s11467-017-0677-7

References

[1]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef ADS Google scholar
[2]
J. Zhang, C. Triola, and E. Rossi, Proximity effect in=graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
CrossRef ADS Google scholar
[3]
K. H. Jin and S. H. Jhi, Proximity-induced giant spin– orbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
CrossRef ADS Google scholar
[4]
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
CrossRef ADS Google scholar
[5]
J. Zhou, Q. Liang, and J. Dong, Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene, Carbon 48(5), 1405 (2010)
CrossRef ADS Google scholar
[6]
M. Gmitra, D. Kochan, and J. Fabian, Spin–orbit coupling in hydrogenated graphene, Phys. Rev. Lett. 110(24), 246602 (2013)
CrossRef ADS Google scholar
[7]
A. Cresti, D. Van Tuan, D. Soriano, A. W. Cummings, and S. Roche, Multiple quantum phases in graphene with enhanced spin–orbit coupling: From the quantum spin Hall regime to the spin Hall effect and a robust metallic state, Phys. Rev. Lett. 113(24), 246603 (2014)
CrossRef ADS Google scholar
[8]
C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X 1(2), 021001 (2011)
CrossRef ADS Google scholar
[9]
A. H. Castro Neto and F. Guinea, Impurity-induced spin–orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
CrossRef ADS Google scholar
[10]
H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
CrossRef ADS Google scholar
[11]
P. Lee, K. H. Jin, S. J. Sung, J. G. Kim, M. T. Ryu, H. M. Park, S. H. Jhi, N. Kim, Y. Kim, S. U. Yu, K. S. Kim, D. Y. Noh, and J. Chung, Proximity effect induced electronic properties of graphene on Bi2Te2Se, ACS Nano 9(11), 10861 (2015)
CrossRef ADS Google scholar
[12]
S. Rajput, Y. Y. Li, M. Weinert, and L. Li, Indirect interlayer bonding in graphene–topological insulator van der Waals heterostructure: Giant spin–orbit splitting of the graphene Dirac states, ACS Nano 10(9), 8450 (2016)
CrossRef ADS Google scholar
[13]
J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys. 9(5), 284 (2013)
[14]
J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S. J. Baeck, J. H. Ahn, A. Ferreira, M. A. Cazalilla, A. H. C. Neto, and B. Özyilmaz, Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun. 5, 4748 (2014)
CrossRef ADS Google scholar
[15]
Y. Han, G. X. Ge, J. G. Wan, J. J. Zhao, F. Q. Song, and G. H. Wang, Predicted giant magnetic anisotropy energy of highly stable Ir dimer on single-vacancy graphene, Phys. Rev. B 87(15), 155408 (2013)
CrossRef ADS Google scholar
[16]
M. V. Ulybyshev and M. I. Katsnelson, Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study, Phys. Rev. Lett. 114(24), 246801 (2015)
CrossRef ADS Google scholar
[17]
Y. C. Lin, P. Y. Teng, P. W. Chiu, and K. Suenaga, Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)
CrossRef ADS Google scholar
[18]
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of largearea graphene films for high-performance transparent conductive electrodes, Nano Lett. 9(12), 4359 (2009)
CrossRef ADS Google scholar
[19]
M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, and G. Wang, Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients, Adv. Mater. 19(19), 2979 (2007)
CrossRef ADS Google scholar
[20]
F. Song, M. Han, M. Liu, B. Chen, J. Wan, and G. Wang, Experimental observation of nanojets formed by heating PbO-coated Pb clusters, Phys. Rev. Lett. 94(9), 093401 (2005)
CrossRef ADS Google scholar
[21]
Y. W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Temperature dependent electron transport in graphene, Eur. Phys. J. Spec. Top. 148(1), 15 (2007)
CrossRef ADS Google scholar
[22]
J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
[23]
Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu, Transport study of graphene adsorbed with indium adatoms, Phys. Rev. B 91(8), 085411 (2015)
CrossRef ADS Google scholar
[24]
K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett. 104(18), 187201 (2010)
CrossRef ADS Google scholar
[25]
X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in Zr-SiS, Adv. Electron. Mater 2 (10) (2016)
[26]
E. McCann and V. I. Fal’ko, z→−zsymmetry of spin– orbit coupling and weak localization in graphene, Phys. Rev. Lett. 108(16), 166606 (2012)
CrossRef ADS Google scholar
[27]
E. McCann and V. I. Fal’ko, Weak localization and spin– orbit coupling in monolayer and bilayer graphene, in: H. Aoki and S. M. Dresselhaus (Eds.), Physics of Graphene, Springer International Publishing, 2014
CrossRef ADS Google scholar
[28]
F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett. 103(22), 226801 (2009)
CrossRef ADS Google scholar
[29]
K. I. Imura, Y. Kuramoto, and K. Nomura, Weak localization properties of the doped Z2 topological insulator, Phys. Rev. B 80(8), 085119 (2009)
CrossRef ADS Google scholar
[30]
K. I. Imura, Y. Kuramoto, and K. Nomura, Antilocalization of graphene under the substrate electric field, Europhys. Lett. 89(1), 17009 (2010)
CrossRef ADS Google scholar
[31]
H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
CrossRef ADS Google scholar
[32]
M. Zarea and N. Sandler, Rashba spin–orbit interaction in graphene and zigzag nanoribbons, Phys. Rev. B 79(16), 165442 (2009)
CrossRef ADS Google scholar
[33]
P. Rakyta, A. Kormányos, and J. Cserti, Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin–orbit coupling, Phys. Rev. B 82(11), 113405 (2010)
CrossRef ADS Google scholar
[34]
D. Huertas-Hernando, F. Guinea, and A. Brataas, Spin–orbit-mediated spin relaxation in graphene, Phys. Rev. Lett. 103(14), 146801 (2009)
CrossRef ADS Google scholar
[35]
E. V. Zhizhin, A. Varykhalov, A. G. Rybkin, A. A. Rybkina, D. A. Pudikov, D. Marchenko, J. Sánchez-Barriga, I. I. Klimovskikh, G. G. Vladimirov, O. Rader, and A. M. Shikin, Spin splitting of Dirac fermions in graphene on Ni intercalated with alloy of Bi and Au, Carbon 93, 984 (2015)
CrossRef ADS Google scholar
[36]
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97(1), 016801 (2006)
CrossRef ADS Google scholar
[37]
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
CrossRef ADS Google scholar
[38]
X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Weak antilocalization in epitaxial graphene: Evidence for chiral electrons, Phys. Rev. Lett. 98(13), 136801 (2007)
CrossRef ADS Google scholar
[39]
G. Fishman and G. Lampel, Spin relaxation of photoelectrons in p-type gallium arsenide, Phys. Rev. B 16(2), 820 (1977)
CrossRef ADS Google scholar
[40]
Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Spin relaxation in GaAs(110) quantum wells, Phys. Rev. Lett. 83(20), 4196 (1999)
CrossRef ADS Google scholar
[41]
A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, Extrinsic spin Hall effect induced by resonant Skew scattering in graphene, Phys. Rev. Lett. 112(6), 066601 (2014)
CrossRef ADS Google scholar
[42]
J. Hu, J. Alicea, R. Wu, and M. Franz, Giant topological insulator gap in graphene with 5d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
CrossRef ADS Google scholar
[43]
J. M. Zuo and B. Q. Li, Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces, Phys. Rev. Lett. 88(25), 255502 (2002)
CrossRef ADS Google scholar
[44]
F. J. Ribeiro, J. B. Neaton, S. G. Louie, and M. L. Cohen, Mechanism for bias-assisted indium mass transport on carbon nanotube surfaces, Phys. Rev. B 72(7), 075302 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(2114 KB)

Accesses

Citations

Detail

Sections
Recommended

/