Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction
Jian-Lei Ge, Tian-Ru Wu, Ming Gao, Zhan-Bin Bai, Lu Cao, Xue-Feng Wang, Yu-Yuan Qin, Feng-Qi Song
Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction
Weak-localization (WL) measurements were performed in a Bi cluster-decorated graphene sheet. The charge concentration was kept constant, and the amplitude of the conductance correction was suppressed after the Bi-cluster deposition. Detailed WL data were obtained while the gate and temperature were changed. Using E. McCann’s formula, the spin-relaxation time was extracted, which was found to increase with the elastic scattering time. This is attributed to the Elliott–Yafet spin relaxation and Kane–Mele type spin–orbit coupling (SOC). The SOC strength was enhanced to 2.64 meV as a result of the first deposition. The coverage effect is discussed according to the measurement after the second deposition.
graphene / cluster deposition / weak localization / spin–orbit coupling
[1] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[2] |
J. Zhang, C. Triola, and E. Rossi, Proximity effect in=graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
CrossRef
ADS
Google scholar
|
[3] |
K. H. Jin and S. H. Jhi, Proximity-induced giant spin– orbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
CrossRef
ADS
Google scholar
|
[4] |
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
CrossRef
ADS
Google scholar
|
[5] |
J. Zhou, Q. Liang, and J. Dong, Enhanced spin–orbit coupling in hydrogenated and fluorinated graphene, Carbon 48(5), 1405 (2010)
CrossRef
ADS
Google scholar
|
[6] |
M. Gmitra, D. Kochan, and J. Fabian, Spin–orbit coupling in hydrogenated graphene, Phys. Rev. Lett. 110(24), 246602 (2013)
CrossRef
ADS
Google scholar
|
[7] |
A. Cresti, D. Van Tuan, D. Soriano, A. W. Cummings, and S. Roche, Multiple quantum phases in graphene with enhanced spin–orbit coupling: From the quantum spin Hall regime to the spin Hall effect and a robust metallic state, Phys. Rev. Lett. 113(24), 246603 (2014)
CrossRef
ADS
Google scholar
|
[8] |
C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, Engineering a robust quantum spin Hall state in graphene via adatom deposition, Phys. Rev. X 1(2), 021001 (2011)
CrossRef
ADS
Google scholar
|
[9] |
A. H. Castro Neto and F. Guinea, Impurity-induced spin–orbit coupling in graphene, Phys. Rev. Lett. 103(2), 026804 (2009)
CrossRef
ADS
Google scholar
|
[10] |
H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, Stabilizing topological phases in graphene via random adsorption, Phys. Rev. Lett. 109(11), 116803 (2012)
CrossRef
ADS
Google scholar
|
[11] |
P. Lee, K. H. Jin, S. J. Sung, J. G. Kim, M. T. Ryu, H. M. Park, S. H. Jhi, N. Kim, Y. Kim, S. U. Yu, K. S. Kim, D. Y. Noh, and J. Chung, Proximity effect induced electronic properties of graphene on Bi2Te2Se, ACS Nano 9(11), 10861 (2015)
CrossRef
ADS
Google scholar
|
[12] |
S. Rajput, Y. Y. Li, M. Weinert, and L. Li, Indirect interlayer bonding in graphene–topological insulator van der Waals heterostructure: Giant spin–orbit splitting of the graphene Dirac states, ACS Nano 10(9), 8450 (2016)
CrossRef
ADS
Google scholar
|
[13] |
J. Balakrishnan, G. Kok Wai Koon, M. Jaiswal, A. H. Castro Neto, and B. Ozyilmaz, Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene, Nat. Phys. 9(5), 284 (2013)
|
[14] |
J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S. J. Baeck, J. H. Ahn, A. Ferreira, M. A. Cazalilla, A. H. C. Neto, and B. Özyilmaz, Giant spin Hall effect in graphene grown by chemical vapour deposition, Nat. Commun. 5, 4748 (2014)
CrossRef
ADS
Google scholar
|
[15] |
Y. Han, G. X. Ge, J. G. Wan, J. J. Zhao, F. Q. Song, and G. H. Wang, Predicted giant magnetic anisotropy energy of highly stable Ir dimer on single-vacancy graphene, Phys. Rev. B 87(15), 155408 (2013)
CrossRef
ADS
Google scholar
|
[16] |
M. V. Ulybyshev and M. I. Katsnelson, Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study, Phys. Rev. Lett. 114(24), 246801 (2015)
CrossRef
ADS
Google scholar
|
[17] |
Y. C. Lin, P. Y. Teng, P. W. Chiu, and K. Suenaga, Exploring the single atom spin state by electron spectroscopy, Phys. Rev. Lett. 115(20), 206803 (2015)
CrossRef
ADS
Google scholar
|
[18] |
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of largearea graphene films for high-performance transparent conductive electrodes, Nano Lett. 9(12), 4359 (2009)
CrossRef
ADS
Google scholar
|
[19] |
M. Han, C. Xu, D. Zhu, L. Yang, J. Zhang, Y. Chen, K. Ding, F. Song, and G. Wang, Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients, Adv. Mater. 19(19), 2979 (2007)
CrossRef
ADS
Google scholar
|
[20] |
F. Song, M. Han, M. Liu, B. Chen, J. Wan, and G. Wang, Experimental observation of nanojets formed by heating PbO-coated Pb clusters, Phys. Rev. Lett. 94(9), 093401 (2005)
CrossRef
ADS
Google scholar
|
[21] |
Y. W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Temperature dependent electron transport in graphene, Eur. Phys. J. Spec. Top. 148(1), 15 (2007)
CrossRef
ADS
Google scholar
|
[22] |
J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
|
[23] |
Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu, Transport study of graphene adsorbed with indium adatoms, Phys. Rev. B 91(8), 085411 (2015)
CrossRef
ADS
Google scholar
|
[24] |
K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Manipulation of spin transport in graphene by surface chemical doping, Phys. Rev. Lett. 104(18), 187201 (2010)
CrossRef
ADS
Google scholar
|
[25] |
X. Wang, X. Pan, M. Gao, J. Yu, J. Jiang, J. Zhang, H. Zuo, M. Zhang, Z. Wei, W. Niu, Z. Xia, X. Wan, Y. Chen, F. Song, Y. Xu, B. Wang, G. Wang, and R. Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in Zr-SiS, Adv. Electron. Mater 2 (10) (2016)
|
[26] |
E. McCann and V. I. Fal’ko, z→−zsymmetry of spin– orbit coupling and weak localization in graphene, Phys. Rev. Lett. 108(16), 166606 (2012)
CrossRef
ADS
Google scholar
|
[27] |
E. McCann and V. I. Fal’ko, Weak localization and spin– orbit coupling in monolayer and bilayer graphene, in: H. Aoki and S. M. Dresselhaus (Eds.), Physics of Graphene, Springer International Publishing, 2014
CrossRef
ADS
Google scholar
|
[28] |
F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Transition between electron localization and antilocalization in graphene, Phys. Rev. Lett. 103(22), 226801 (2009)
CrossRef
ADS
Google scholar
|
[29] |
K. I. Imura, Y. Kuramoto, and K. Nomura, Weak localization properties of the doped Z2 topological insulator, Phys. Rev. B 80(8), 085119 (2009)
CrossRef
ADS
Google scholar
|
[30] |
K. I. Imura, Y. Kuramoto, and K. Nomura, Antilocalization of graphene under the substrate electric field, Europhys. Lett. 89(1), 17009 (2010)
CrossRef
ADS
Google scholar
|
[31] |
H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
CrossRef
ADS
Google scholar
|
[32] |
M. Zarea and N. Sandler, Rashba spin–orbit interaction in graphene and zigzag nanoribbons, Phys. Rev. B 79(16), 165442 (2009)
CrossRef
ADS
Google scholar
|
[33] |
P. Rakyta, A. Kormányos, and J. Cserti, Trigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin–orbit coupling, Phys. Rev. B 82(11), 113405 (2010)
CrossRef
ADS
Google scholar
|
[34] |
D. Huertas-Hernando, F. Guinea, and A. Brataas, Spin–orbit-mediated spin relaxation in graphene, Phys. Rev. Lett. 103(14), 146801 (2009)
CrossRef
ADS
Google scholar
|
[35] |
E. V. Zhizhin, A. Varykhalov, A. G. Rybkin, A. A. Rybkina, D. A. Pudikov, D. Marchenko, J. Sánchez-Barriga, I. I. Klimovskikh, G. G. Vladimirov, O. Rader, and A. M. Shikin, Spin splitting of Dirac fermions in graphene on Ni intercalated with alloy of Bi and Au, Carbon 93, 984 (2015)
CrossRef
ADS
Google scholar
|
[36] |
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97(1), 016801 (2006)
CrossRef
ADS
Google scholar
|
[37] |
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100(5), 056802 (2008)
CrossRef
ADS
Google scholar
|
[38] |
X. Wu, X. Li, Z. Song, C. Berger, and W. A. de Heer, Weak antilocalization in epitaxial graphene: Evidence for chiral electrons, Phys. Rev. Lett. 98(13), 136801 (2007)
CrossRef
ADS
Google scholar
|
[39] |
G. Fishman and G. Lampel, Spin relaxation of photoelectrons in p-type gallium arsenide, Phys. Rev. B 16(2), 820 (1977)
CrossRef
ADS
Google scholar
|
[40] |
Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Spin relaxation in GaAs(110) quantum wells, Phys. Rev. Lett. 83(20), 4196 (1999)
CrossRef
ADS
Google scholar
|
[41] |
A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. H. Castro Neto, Extrinsic spin Hall effect induced by resonant Skew scattering in graphene, Phys. Rev. Lett. 112(6), 066601 (2014)
CrossRef
ADS
Google scholar
|
[42] |
J. Hu, J. Alicea, R. Wu, and M. Franz, Giant topological insulator gap in graphene with 5d adatoms, Phys. Rev. Lett. 109(26), 266801 (2012)
CrossRef
ADS
Google scholar
|
[43] |
J. M. Zuo and B. Q. Li, Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces, Phys. Rev. Lett. 88(25), 255502 (2002)
CrossRef
ADS
Google scholar
|
[44] |
F. J. Ribeiro, J. B. Neaton, S. G. Louie, and M. L. Cohen, Mechanism for bias-assisted indium mass transport on carbon nanotube surfaces, Phys. Rev. B 72(7), 075302 (2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |