Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system

Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳)

PDF(3987 KB)
PDF(3987 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 125201. DOI: 10.1007/s11467-017-0676-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system

Author information +
History +

Abstract

Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone–Wales (SW) defected graphene–silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone–Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

Keywords

quantum plasmons / coherent resonance / SW defected graphene / silver nanowires / hybrid system

Cite this article

Download citation ▾
Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Front. Phys., 2017, 12(5): 125201 https://doi.org/10.1007/s11467-017-0676-8

References

[1]
S. A.Maier and H. A.Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)
CrossRef ADS Google scholar
[2]
A.Karalis, E.Lidorikis, M.Ibanescu, J. D.Joannopoulos, and M.Soljačić, Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air, Phys. Rev. Lett.95(6), 063901 (2005)
CrossRef ADS Google scholar
[3]
Y. C.Cao, R.Jin, and C. A.Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science297(5586), 1536 (2002)
CrossRef ADS Google scholar
[4]
S. A.Maier, P. G.Kik, and H. A.Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett.81(9), 1714 (2002)
CrossRef ADS Google scholar
[5]
L.Novotny and N.Van Hulst, Antennas for light, Nat. Photonics5(2), 83 (2011)
CrossRef ADS Google scholar
[6]
A.Gonzalez-Tudela, D.Martin-Cano, E.Moreno, L.Martin-Moreno, C.Tejedor, and F. J.Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett.106(2), 020501 (2011)
CrossRef ADS Google scholar
[7]
W.Choi, I.Lahiri, R.Seelaboyina, and Y. S.Kang, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci.35(1), 52 (2010)
CrossRef ADS Google scholar
[8]
F. J.Garcia de Abajo, Graphene nanophotonics, Science339(6122), 917 (2013)
CrossRef ADS Google scholar
[9]
F.Schwierz,Graphene transistors, Nat. Nanotechnol.5(7), 487 (2010)
CrossRef ADS Google scholar
[10]
L.Liao, Y. C.Lin, M.Bao, R.Cheng, J.Bai, Y.Liu, Y.Qu, K. L.Wang, Y.Huang, and X.Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature467(7313), 305 (2010)
CrossRef ADS Google scholar
[11]
F. H. L.Koppens, D. E.Chang, and F. J.Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett.11(8), 3370 (2011)
CrossRef ADS Google scholar
[12]
A.Vakil and N.Engheta, Transformation optics using graphene, Science332(6035), 1291 (2011)
CrossRef ADS Google scholar
[13]
S.Thongrattanasiri, F. H. L.Koppens, and F. J.Garcia de Abajo, Complete optical absorption in periodically patterned graphene, Phys. Rev. Lett.108(4), 047401 (2012)
CrossRef ADS Google scholar
[14]
J. H.Chen, C.Jang, S. D.Xiao, M.Ishigamiand, and M. S.Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol.3(4), 206 (2008)
CrossRef ADS Google scholar
[15]
K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, , Electric field effect in atomically thin carbon films, Science306(5696), 666 (2004)
CrossRef ADS Google scholar
[16]
C. C.Neacsu, J.Dreyer, N.Behr, and M. B.Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity, Phys. Rev. B73(19), 193406 (2006)
CrossRef ADS Google scholar
[17]
K.Zhang, H.Zhang, and C.Li, Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system, Phys. Chem. Chem. Phys.17(18), 12051 (2015)
CrossRef ADS Google scholar
[18]
M. D.Sonntag, J. M.Klingsporn, L. K.Garibay, J. M.Roberts, J. A.Dieringer, T.Seideman, K. A.Scheidt, L.Jensen, G. C.Schatz, and R. P. VanDuyne, Singlemolecule tip-enhanced Raman spectroscopy, J. Phys. Chem. C116(1), 478 (2012)
CrossRef ADS Google scholar
[19]
E. M. van S.Lantman, T.Deckert-Gaudig, A. J. G.Mank, V.Deckert, and B. M.Weckhuysen, Catalytic processes monitored at the nanoscale with tipenhanced Raman spectroscopy, Nat. Nanotechnol. 7(9), 583 (2012)
CrossRef ADS Google scholar
[20]
R.Zhang, Y.Zhang, Z. C.Dong,S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)
CrossRef ADS Google scholar
[21]
T. W.Ebbesen and T.Takada, Topological and SP3 defect structures in nanotubes, Carbon33(7), 973 (1995)
CrossRef ADS Google scholar
[22]
D.Wu, K.Yan, Y.Zhou, H.Wang, L.Lin, H.Peng, and Z.Liu, Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions, Chem. Soc. 135(30), 10926 (2013)
CrossRef ADS Google scholar
[23]
Y.Takatsuka,K.Takahagi, E.Sano, IIRyzh, and T.Otsuji, Gain enhancement in graphene terahertz amplifiers with resonant structures, J. Appl. Phys. 112(3), 033103 (2012)
CrossRef ADS Google scholar
[24]
Y.Liu, R.Cheng, L.Liao, H.Zhou, J.Bai, G.Liu, L.Liu, Y.Huang, and X.Duan, Plasmon resonance enhanced multicolour photodetection by graphene, Nat. Commun. 2, 579 (2011)
CrossRef ADS Google scholar
[25]
A.Ferreira and N. M. R.Peres, Complete light absorption in graphene-metamaterial corrugated structures, Phys. Rev. B86(20), 205401 (2012)
CrossRef ADS Google scholar
[26]
Y.Li, H.Zhang, D. W.Yan, H. F.Yin, and X. L.Cheng, Secondary plasmon resonance in graphene nanostructures, Front. Phys. 10(1), 102 (2015)
CrossRef ADS Google scholar
[27]
G.Bachelier, I.Russier-Antoine, E.Benichou, C.Jonin, N.DelFatti, F.Vallee, and P. F.Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)
CrossRef ADS Google scholar
[28]
L. V.Brown, H.Sobhani, J. B.Lassiter, P.Nordlander, and N. J.Halas, Heterodimers: Plasmonic properties of mismatched nanoparticle pairs, ACS Nano4(2), 819 (2010)
CrossRef ADS Google scholar
[29]
T. G.Habteyes, S.Dhuey, S.Cabrini, P. J.Schuck, and S. R.Leone, Theta-shaped plasmonic nanostructures: Bringing “dark” multipole plasmon resonances into action via conductive coupling, Nano Lett. 11(4), 1819 (2011)
CrossRef ADS Google scholar
[30]
J. J.Mock, R. T.Hill, A.Degiron, S.Zauscher, A.Chilkoti, and D. R.Smith, Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film, Nano Lett. 8(8), 2245 (2008)
CrossRef ADS Google scholar
[31]
M. M.Miller and A. A.Lazarides, Lazari des, A, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B109(46), 21556 (2005)
CrossRef ADS Google scholar
[32]
T.Pakizeh and M.Käll, Unidirectional ultracompact optical nanoantennas, Nano Lett. 9(6), 2343 (2009)
CrossRef ADS Google scholar
[33]
P. K.Jain and M. A.El-Sayed, Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487(4–6), 153 (2010)
CrossRef ADS Google scholar
[34]
R.Zhang, Y.Zhang, Z. C.Dong, S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)
CrossRef ADS Google scholar
[35]
H. X.Xu, J.Aizpurua, M.Käll, and P. E.Apell, Electromagnetic contributions to single molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E62(3), 4318 (2000)
CrossRef ADS Google scholar
[36]
J.Stadler, T.Schmid, and R.Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman Spectroscopy, Nano Lett. 10(11), 4514 (2010)
CrossRef ADS Google scholar
[37]
S.Yoshizawa, H.Kim, T.Kawakami, Y.Nagai, T.Nakayama, X.Hu, Y.Hasegawa, and T.Uchihashi, Imaging Josephson vortices on the surface superconductor Si(111)−(7×3)−In, Phys. Rev. Lett. 113(24), 247004 (2014)
CrossRef ADS Google scholar
[38]
M. A. L.Marques, A.Castro, G. F.Bertsch, and A.Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun. 151(1), 60 (2003)
CrossRef ADS Google scholar
[39]
N.Troullier and J. L.Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43, 1993 (1991)
CrossRef ADS Google scholar
[40]
D. M.Ceperley and B. J.Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
CrossRef ADS Google scholar
[41]
J.Yan, Z.Yuan, and S. W.Gao, End and central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98(21), 216602 (2007)
CrossRef ADS Google scholar
[42]
D. C.Marinica,A. K.Kazansky, P.Nordlander, J.Aizpurua, and A. G.Borisov, Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer, Nano Lett. 12(3), 1333 (2012)
CrossRef ADS Google scholar
[43]
Z. Y.Fang, Z.Liu, Y. M.Wang, P. M.Ajayan, P.Nordlander, and N. J.Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)
CrossRef ADS Google scholar
[44]
J.Niu, Y. J.Shin, Y.Lee, J.-H.Ahn, and H.Yang, Graphene induced tunability of the surface plasmon resonance, Appl. Phys. Lett. 100(6), 061116 (2012)
CrossRef ADS Google scholar
[45]
Y.Kobayashi, K.Fukui, T.Enoki, K.Kusakabe, and Y.Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B71(19), 193406 (2005)
CrossRef ADS Google scholar
[46]
L.Brey and H. A.Fertig, Elementary electronic excitations in graphene nanoribbons, Phys. Rev. B75(12), 125434 (2007)
CrossRef ADS Google scholar
[47]
Y. W.Son, M. L.Cohen, and S. G.Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3987 KB)

Accesses

Citations

Detail

Sections
Recommended

/