Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system

Liu (刘彤)Tong , Zhang (张红)Hong , Cheng (程新路)Xin-Lu , Xu (徐阳)Yang

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 125201

PDF (3987KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 125201 DOI: 10.1007/s11467-017-0676-8
RESEARCH ARTICLE

Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system

Author information +
History +
PDF (3987KB)

Abstract

Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone–Wales (SW) defected graphene–silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone–Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

Keywords

quantum plasmons / coherent resonance / SW defected graphene / silver nanowires / hybrid system

Cite this article

Download citation ▾
Liu (刘彤)Tong, Zhang (张红)Hong, Cheng (程新路)Xin-Lu, Xu (徐阳)Yang. Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Front. Phys., 2017, 12(5): 125201 DOI:10.1007/s11467-017-0676-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. A.Maier and H. A.Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)

[2]

A.Karalis, E.Lidorikis, M.Ibanescu, J. D.Joannopoulos, and M.Soljačić, Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air, Phys. Rev. Lett.95(6), 063901 (2005)

[3]

Y. C.Cao, R.Jin, and C. A.Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science297(5586), 1536 (2002)

[4]

S. A.Maier, P. G.Kik, and H. A.Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett.81(9), 1714 (2002)

[5]

L.Novotny and N.Van Hulst, Antennas for light, Nat. Photonics5(2), 83 (2011)

[6]

A.Gonzalez-Tudela, D.Martin-Cano, E.Moreno, L.Martin-Moreno, C.Tejedor, and F. J.Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett.106(2), 020501 (2011)

[7]

W.Choi, I.Lahiri, R.Seelaboyina, and Y. S.Kang, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci.35(1), 52 (2010)

[8]

F. J.Garcia de Abajo, Graphene nanophotonics, Science339(6122), 917 (2013)

[9]

F.Schwierz,Graphene transistors, Nat. Nanotechnol.5(7), 487 (2010)

[10]

L.Liao, Y. C.Lin, M.Bao, R.Cheng, J.Bai, Y.Liu, Y.Qu, K. L.Wang, Y.Huang, and X.Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature467(7313), 305 (2010)

[11]

F. H. L.Koppens, D. E.Chang, and F. J.Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett.11(8), 3370 (2011)

[12]

A.Vakil and N.Engheta, Transformation optics using graphene, Science332(6035), 1291 (2011)

[13]

S.Thongrattanasiri, F. H. L.Koppens, and F. J.Garcia de Abajo, Complete optical absorption in periodically patterned graphene, Phys. Rev. Lett.108(4), 047401 (2012)

[14]

J. H.Chen, C.Jang, S. D.Xiao, M.Ishigamiand, and M. S.Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol.3(4), 206 (2008)

[15]

K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, , Electric field effect in atomically thin carbon films, Science306(5696), 666 (2004)

[16]

C. C.Neacsu, J.Dreyer, N.Behr, and M. B.Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity, Phys. Rev. B73(19), 193406 (2006)

[17]

K.Zhang, H.Zhang, and C.Li, Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system, Phys. Chem. Chem. Phys.17(18), 12051 (2015)

[18]

M. D.Sonntag, J. M.Klingsporn, L. K.Garibay, J. M.Roberts, J. A.Dieringer, T.Seideman, K. A.Scheidt, L.Jensen, G. C.Schatz, and R. P. VanDuyne, Singlemolecule tip-enhanced Raman spectroscopy, J. Phys. Chem. C116(1), 478 (2012)

[19]

E. M. van S.Lantman, T.Deckert-Gaudig, A. J. G.Mank, V.Deckert, and B. M.Weckhuysen, Catalytic processes monitored at the nanoscale with tipenhanced Raman spectroscopy, Nat. Nanotechnol. 7(9), 583 (2012)

[20]

R.Zhang, Y.Zhang, Z. C.Dong,S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)

[21]

T. W.Ebbesen and T.Takada, Topological and SP3 defect structures in nanotubes, Carbon33(7), 973 (1995)

[22]

D.Wu, K.Yan, Y.Zhou, H.Wang, L.Lin, H.Peng, and Z.Liu, Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions, Chem. Soc. 135(30), 10926 (2013)

[23]

Y.Takatsuka,K.Takahagi, E.Sano, IIRyzh, and T.Otsuji, Gain enhancement in graphene terahertz amplifiers with resonant structures, J. Appl. Phys. 112(3), 033103 (2012)

[24]

Y.Liu, R.Cheng, L.Liao, H.Zhou, J.Bai, G.Liu, L.Liu, Y.Huang, and X.Duan, Plasmon resonance enhanced multicolour photodetection by graphene, Nat. Commun. 2, 579 (2011)

[25]

A.Ferreira and N. M. R.Peres, Complete light absorption in graphene-metamaterial corrugated structures, Phys. Rev. B86(20), 205401 (2012)

[26]

Y.Li, H.Zhang, D. W.Yan, H. F.Yin, and X. L.Cheng, Secondary plasmon resonance in graphene nanostructures, Front. Phys. 10(1), 102 (2015)

[27]

G.Bachelier, I.Russier-Antoine, E.Benichou, C.Jonin, N.DelFatti, F.Vallee, and P. F.Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)

[28]

L. V.Brown, H.Sobhani, J. B.Lassiter, P.Nordlander, and N. J.Halas, Heterodimers: Plasmonic properties of mismatched nanoparticle pairs, ACS Nano4(2), 819 (2010)

[29]

T. G.Habteyes, S.Dhuey, S.Cabrini, P. J.Schuck, and S. R.Leone, Theta-shaped plasmonic nanostructures: Bringing “dark” multipole plasmon resonances into action via conductive coupling, Nano Lett. 11(4), 1819 (2011)

[30]

J. J.Mock, R. T.Hill, A.Degiron, S.Zauscher, A.Chilkoti, and D. R.Smith, Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film, Nano Lett. 8(8), 2245 (2008)

[31]

M. M.Miller and A. A.Lazarides, Lazari des, A, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B109(46), 21556 (2005)

[32]

T.Pakizeh and M.Käll, Unidirectional ultracompact optical nanoantennas, Nano Lett. 9(6), 2343 (2009)

[33]

P. K.Jain and M. A.El-Sayed, Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487(4–6), 153 (2010)

[34]

R.Zhang, Y.Zhang, Z. C.Dong, S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)

[35]

H. X.Xu, J.Aizpurua, M.Käll, and P. E.Apell, Electromagnetic contributions to single molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E62(3), 4318 (2000)

[36]

J.Stadler, T.Schmid, and R.Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman Spectroscopy, Nano Lett. 10(11), 4514 (2010)

[37]

S.Yoshizawa, H.Kim, T.Kawakami, Y.Nagai, T.Nakayama, X.Hu, Y.Hasegawa, and T.Uchihashi, Imaging Josephson vortices on the surface superconductor Si(111)−(7×3)−In, Phys. Rev. Lett. 113(24), 247004 (2014)

[38]

M. A. L.Marques, A.Castro, G. F.Bertsch, and A.Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun. 151(1), 60 (2003)

[39]

N.Troullier and J. L.Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43, 1993 (1991)

[40]

D. M.Ceperley and B. J.Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)

[41]

J.Yan, Z.Yuan, and S. W.Gao, End and central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98(21), 216602 (2007)

[42]

D. C.Marinica,A. K.Kazansky, P.Nordlander, J.Aizpurua, and A. G.Borisov, Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer, Nano Lett. 12(3), 1333 (2012)

[43]

Z. Y.Fang, Z.Liu, Y. M.Wang, P. M.Ajayan, P.Nordlander, and N. J.Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)

[44]

J.Niu, Y. J.Shin, Y.Lee, J.-H.Ahn, and H.Yang, Graphene induced tunability of the surface plasmon resonance, Appl. Phys. Lett. 100(6), 061116 (2012)

[45]

Y.Kobayashi, K.Fukui, T.Enoki, K.Kusakabe, and Y.Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B71(19), 193406 (2005)

[46]

L.Brey and H. A.Fertig, Elementary electronic excitations in graphene nanoribbons, Phys. Rev. B75(12), 125434 (2007)

[47]

Y. W.Son, M. L.Cohen, and S. G.Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3987KB)

909

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/