Synchronization of coupled metronomes on two layers
Jing Zhang, Yi-Zhen Yu, Xin-Gang Wang
Synchronization of coupled metronomes on two layers
Coupled metronomes serve as a paradigmatic model for exploring the collective behaviors of complex dynamical systems, as well as a classical setup for classroom demonstrations of synchronization phenomena. Whereas previous studies of metronome synchronization have been concentrating on symmetric coupling schemes, here we consider the asymmetric case by adopting the scheme of layered metronomes. Specifically, we place two metronomes on each layer, and couple two layers by placing one on top of the other. By varying the initial conditions of the metronomes and adjusting the friction between the two layers, a variety of synchronous patterns are observed in experiment, including the splay synchronization (SS) state, the generalized splay synchronization (GSS) state, the anti-phase synchronization (APS) state, the in-phase delay synchronization (IPDS) state, and the in-phase synchronization (IPS) state. In particular, the IPDS state, in which the metronomes on each layer are synchronized in phase but are of a constant phase delay to metronomes on the other layer, is observed for the first time. In addition, a new technique based on audio signals is proposed for pattern detection, which is more convenient and easier to apply than the existing acquisition techniques. Furthermore, a theoretical model is developed to explain the experimental observations, and is employed to explore the dynamical properties of the patterns, including the basin distributions and the pattern transitions. Our study sheds new lights on the collective behaviors of coupled metronomes, and the developed setup can be used in the classroom for demonstration purposes.
coupled oscillators / experimental study / synchronization pattern
[1] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Berlin: Springer-Verlag, 1984
CrossRef
ADS
Google scholar
|
[2] |
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear ScienceCambridge: Cambridge University Press, 2001
CrossRef
ADS
Google scholar
|
[3] |
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
|
[4] |
C. Huygens, [Letter to de Sluse]. Oeuveres Completes de Christian Huygens. (Letters; No. 133 of 24 February 1665, No. 1335 of 26 February 1665, No. 1345 of 6 March 1665), Societe Hollandaise DesSciences, Martinus Nijhor, La Haye, 1665
|
[5] |
M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Synchronization of clocks, Phys. Rep. 517(1–2), 1 (2012)
CrossRef
ADS
Google scholar
|
[6] |
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)
CrossRef
ADS
Google scholar
|
[7] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
CrossRef
ADS
Google scholar
|
[8] |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef
ADS
Google scholar
|
[9] |
C. Q. Wang, A. Pumir, N. B. Garnier, and Z. H. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)
CrossRef
ADS
Google scholar
|
[10] |
S. F. Ma, H. J. Bi, Y. Zou, Z. H. Liu, and S. G. Guang, Shuttle-run synchronization in mobile ad hoc networks, Front. Phys. 10(3), 100505 (2015)
CrossRef
ADS
Google scholar
|
[11] |
M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, Huygens’s clocks, Proc. R. Soc. Lond. A 458(2019), 563 (2002)
CrossRef
ADS
Google scholar
|
[12] |
J. Pantaleone, Synchronization of metronomes, Am. J. Phys. 70(10), 992 (2002)
CrossRef
ADS
Google scholar
|
[13] |
Y. Wu, N. Wang, L. Li, and J. Xiao, Anti-phase synchronization of two coupled mechanical metronomes, Chaos 22(2), 023146 (2012)
CrossRef
ADS
Google scholar
|
[14] |
Y. Wu, Z. Song, W. Liu, J. Jia, and J. Xiao, Experimental and numerical study on the basin stability of the coupled metronomes, Eur. Phys. J. Spec. Top. 223(4), 697 (2014)
CrossRef
ADS
Google scholar
|
[15] |
Z. Song, Y. Wu, W. Liu, and J. Xiao, Experimental study of the irrational phase synchronization of coupled nonidentical mechanical metronomes, PLoS One 10, 0118986 (2015)
CrossRef
ADS
Google scholar
|
[16] |
Q. Hu, W. Liu, H. Yang, J. Xiao, and X. Qian, Experimental study on synchronization of three coupled mechanical metronomes, Eur. J. Phys. 34(2), 291 (2013)
CrossRef
ADS
Google scholar
|
[17] |
J. Jia, Z. Song, W. Liu, J. Kurths, and J. Xiao, Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep. 5, 17008 (2015)
CrossRef
ADS
Google scholar
|
[18] |
B. Kralemann, A. Pikovsky, and M. Rosenblum, Detecting triplet locking by triplet synchronization indices, Phys. Rev. E 87(5), 052904 (2013)
CrossRef
ADS
Google scholar
|
[19] |
K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, Clustering and synchronization of nHuygens’ clocks,Physica A 388(24), 5013 (2009)
CrossRef
ADS
Google scholar
|
[20] |
H. Ulrichs, A. Mann, and U. Parlitz, Synchronization and chaotic dynamics of coupled mechanical metronomes, Chaos 19(4), 043120 (2009)
CrossRef
ADS
Google scholar
|
[21] |
E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA 110(26), 10563 (2013)
CrossRef
ADS
Google scholar
|
[22] |
S. Boda, S. Ujv’ari, A. Tunyagi, and Z. N’eda, Kuramoto-type phase transition with metronomes, Eur. J. Phys. 34(6), 1451 (2013)
CrossRef
ADS
Google scholar
|
[23] |
T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, and Y. Maistrenko, Imperfect chimera states for coupled pendulums, Sci. Rep. 4, 6379 (2014)
CrossRef
ADS
Google scholar
|
[24] |
M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
CrossRef
ADS
Google scholar
|
[25] |
Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
CrossRef
ADS
Google scholar
|
[26] |
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef
ADS
Google scholar
|
[27] |
C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
CrossRef
ADS
Google scholar
|
[28] |
C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
CrossRef
ADS
Google scholar
|
[29] |
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
CrossRef
ADS
Google scholar
|
[30] |
T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry, Phys. Rev. Lett. 117(11), 114101 (2016)
CrossRef
ADS
Google scholar
|
[31] |
M. Zhan, G. Hu, Y. Zhang, and D. He, Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions, Phys. Rev. Lett. 86(8), 1510 (2001)
CrossRef
ADS
Google scholar
|
[32] |
X. G. Wang, M. Zhan, C. H. Lai, and G. Hu, Measure synchronization in coupled j4 Hamiltonian systems, Phys. Rev. E 67(6), 066215 (2003)
CrossRef
ADS
Google scholar
|
[33] |
K. Czołczyński, P. Perlikowski, A. Stefańki, and T. Kapitaniak, Clustering of non-identical clocks, Prog. Theor. Phys. 125(3), 473 (2011)
CrossRef
ADS
Google scholar
|
[34] |
X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75 (5), 056205 (2007)
CrossRef
ADS
Google scholar
|
[35] |
X. G. Wang, L. Huang, Y. C. Lai, and C. H. Lai, Optimization of synchronization in gradient clustered networks, Phys. Rev. E 76(5), 056113 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |