Joint multifractal analysis based on wavelet leaders

Zhi-Qiang Jiang, Yan-Hong Yang, Gang-Jin Wang, Wei-Xing Zhou

PDF(3059 KB)
PDF(3059 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 128907. DOI: 10.1007/s11467-017-0674-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Joint multifractal analysis based on wavelet leaders

Author information +
History +

Abstract

Mutually interacting components form complex systems and these components usually have longrange cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.

Keywords

joint multifractal analysis / wavelet leader / binomial measure / bivariate fractional Brownian motion / econophysics / online world

Cite this article

Download citation ▾
Zhi-Qiang Jiang, Yan-Hong Yang, Gang-Jin Wang, Wei-Xing Zhou. Joint multifractal analysis based on wavelet leaders. Front. Phys., 2017, 12(6): 128907 https://doi.org/10.1007/s11467-017-0674-x

References

[1]
B. Podobnik and H. E. Stanley, Detrended crosscorrelation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. 100(8), 084102 (2008)
CrossRef ADS Google scholar
[2]
P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A 97(6), 227 (1983)
CrossRef ADS Google scholar
[3]
P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9(1–2), 189 (1983)
CrossRef ADS Google scholar
[4]
T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33(2), 1141 (1986)
CrossRef ADS Google scholar
[5]
A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13(01), 82 (1962)
CrossRef ADS Google scholar
[6]
F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech. 140, 63 (1984)
CrossRef ADS Google scholar
[7]
A. Castro e Silva and J. G. Moreira, Roughness exponents to calculate multi-affine fractal exponents, Physica A 235(3–4), 327 (1997)
[8]
R. O. Weber and P. Talkner, Spectra and correlations of climate data from days to decades, J. Geophys. Res. 106(D17), 20131 (2001)
CrossRef ADS Google scholar
[9]
J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny- Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316(1–4), 87 (2002)
CrossRef ADS Google scholar
[10]
E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27(2), 197 (2002)
CrossRef ADS Google scholar
[11]
A. Carbone, G. Castelli, and H. E. Stanley, Timedependent Hurst exponent in financial time series, Physica A 344(1–2), 267 (2004)
CrossRef ADS Google scholar
[12]
A. Carbone, G. Castelli, and H. E. Stanley, Analysis of clusters formed by the moving average of a long-range correlated time series, Phys. Rev. E 69(2), 026105 (2004)
CrossRef ADS Google scholar
[13]
G. F. Gu and W. X. Zhou, Detrending moving average algorithm for multifractals, Phys. Rev. E 82(1), 011136 (2010)
CrossRef ADS Google scholar
[14]
C. Meneveau, K. R. Sreenivasan, P. Kailasnath, and M. S. Fan, Joint multifractal measures: Theory and applications to turbulence, Phys. Rev. A 41(2), 894 (1990)
CrossRef ADS Google scholar
[15]
W. J. Xie, Z. Q. Jiang, G. F. Gu, X. Xiong, and W. X. Zhou, Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application, New J. Phys. 17(10), 103020 (2015)
CrossRef ADS Google scholar
[16]
J. Wang, P. J. Shang, and W. J. Ge, Multifractal crosscorrelation analysis based on statistical moments, Fractals 20(03n04), 271 (2012)
[17]
L. Kristoufek, Multifractal height cross-correlation analysis: A new method for analyzing long-range crosscorrelations, EPL 95(6), 68001 (2011)
CrossRef ADS Google scholar
[18]
W. X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys. Rev. E 77(6), 066211 (2008)
CrossRef ADS Google scholar
[19]
A. Carbone and G. Castelli, Noise in complex systems and stochastic dynamics, Proc. SPIE 5114, 406 (2003)
[20]
S. Arianos and A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A 382(1), 9 (2007)
CrossRef ADS Google scholar
[21]
A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals, Phys. Rev. E 76(5), 056703 (2007)
CrossRef ADS Google scholar
[22]
A. Carbone and K. Kiyono, Detrending moving average algorithm: Frequency response and scaling performances, Phys. Rev. E 93(6), 063309 (2016)
CrossRef ADS Google scholar
[23]
Y. Tsujimoto, Y. Miki, S. Shimatani, and K. Kiyono, Fast algorithm for scaling analysis with higher-order detrending moving average method, Phys. Rev. E 93(5), 053304 (2016)
CrossRef ADS Google scholar
[24]
K. Kiyono and Y. Tsujimoto, Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses, Phys. Rev. E 94(1), 012111 (2016)
CrossRef ADS Google scholar
[25]
Z. Q. Jiang and W. X. Zhou, Multifractal detrending moving-average cross-correlation analysis, Phys. Rev. E 84(1), 016106 (2011)
CrossRef ADS Google scholar
[26]
P. Oświe¸cimk, S. Drożdż, M. Forczek, S. Jadach, and J. Kwapień, Detrended cross-correlation analysis consistently extended to multifractality, Phys. Rev. E 89(2), 023305 (2014)
CrossRef ADS Google scholar
[27]
J. Kwapień, P. Oświe¸cimka, and S. Drożdż, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Phys. Rev. E 92(5), 052815 (2015)
CrossRef ADS Google scholar
[28]
X. Y. Qian, Y. M. Liu, Z. Q. Jiang, B. Podobnik, W. X. Zhou, and H. E. Stanley, Detrended partial crosscorrelation analysis of two nonstationary time series influenced by common external forces, Phys. Rev. E 91(6), 062816 (2015)
CrossRef ADS Google scholar
[29]
Y. D. Wang, Y. Wei, and C. F. Wu, Cross-correlations between Chinese A-share and B-share markets, Physica A 389(23), 5468 (2010)
CrossRef ADS Google scholar
[30]
Y. D. Wang, Y. Wei, and C. F. Wu, Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil, Physica A 390(5), 864 (2011)
CrossRef ADS Google scholar
[31]
G. J. Wang and C. Xie, Cross-correlations between the CSI 300 spot and futures markets, Nonlinear Dyn. 73(3), 1687 (2013)
CrossRef ADS Google scholar
[32]
G. J. Wang and C. Xie, Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket, Physica A 392(6), 1418 (2013)
CrossRef ADS Google scholar
[33]
F. Ma, Y. Wei, and D. S. Huang, Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets, Physica A 392(7), 1659 (2013)
CrossRef ADS Google scholar
[34]
D. H. Wang, Y. Y. Suo, X. W. Yu, and M. Lei, Price– volume cross-correlation analysis of CSI300 index futures, Physica A 392(5), 1172 (2013)
CrossRef ADS Google scholar
[35]
G. J. Wang, C. Xie, L. Y. He, and S. Chen, Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales, Physica A 405, 70 (2014)
CrossRef ADS Google scholar
[36]
Y. Zhou and S. Chen, Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data, Physica A 443, 117 (2016)
CrossRef ADS Google scholar
[37]
M. Holschneider, On the wavelet transformation of fractal objects, J. Stat. Phys. 50(5–6), 963 (1988)
CrossRef ADS Google scholar
[38]
A. Arnéodo, G. Grasseau, and M. Holschneider, Wavelet transform of multifractals, Phys. Rev. Lett. 61(20), 2281 (1988)
CrossRef ADS Google scholar
[39]
J. F. Muzy, E. Bacry, and A. Arnéodo, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett. 67(25), 3515 (1991)
CrossRef ADS Google scholar
[40]
Z. Q. Jiang, W. X. Zhou, and H. E. Stanley, Multifractal cross wavelet analysis, arXiv: 1610.09519 (2016)
[41]
L. Hudgins, C. A. Friehe, and M. E. Mayer, Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett. 71(20), 3279 (1993)
CrossRef ADS Google scholar
[42]
D. Maraun and J. Kurths, Cross wavelet analysis: Significance testing and pitfalls, Nonlinear Process. Geophys. 11(4), 505 (2004)
CrossRef ADS Google scholar
[43]
L. Aguiar-Conraria and M. J. Soares, The continuous wavelet transform: Moving beyond uni- and bivariate analysis, J. Econ. Surv. 28(2), 344 (2014)
CrossRef ADS Google scholar
[44]
B. Lashermes, S. G. Roux, P. Abry, and S. Jaffard, Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, Eur. Phys. J. B 61(2), 201 (2008)
CrossRef ADS Google scholar
[45]
E. Serrano and A. Figliola, Wavelet leaders: A new method to estimate the multifractal singularity spectra, Physica A 388(14), 2793 (2009)
CrossRef ADS Google scholar
[46]
H. Wendt, S. G. Roux, S. Jaffard, and P. Abry, Wavelet leaders and bootstrap for multifractal analysis of images, Signal Process. 89(6), 1100 (2009)
CrossRef ADS Google scholar
[47]
A. B. Chhabra and R. V. Jensen, Direct determination of the f(a) singularity spectrum, Phys. Rev. Lett. 62(12), 1327 (1989)
CrossRef ADS Google scholar
[48]
C. Meneveau and K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59(13), 1424 (1987)
CrossRef ADS Google scholar
[49]
F. Lavancier, A. Philippe, and D. Surgailis, Covariance function of vector self-similar processes, Stat. Probab. Lett. 79(23), 2415 (2009)
CrossRef ADS Google scholar
[50]
J.-F. Coeurjolly, P. Amblard, and S. Achard, On multivariate fractional Brownian motion and multivariate fractional Gaussian noise, Eur. Signal Process. Conf. 18, 1567 (2010)
[51]
P. O. Amblard, J. F. Coeurjolly, F. Lavancier, and A. Philippe, Basic properties of the multivariate fractional Brownian motion, Bull. Soc. Math. France, Sémin. Congr. 28, 65 (2013)
[52]
Z. Q. Jiang and W. X. Zhou, Scale invariant distribution and multifractality of volatility multipliers in stock markets, Physica A 381, 343 (2007)
CrossRef ADS Google scholar
[53]
Z. Q. Jiang, W. J. Xie, and W. X. Zhou, Testing the weak-form efficiency of the WTI crude oil futures market, Physica A 405, 235 (2014)
CrossRef ADS Google scholar
[54]
Z. Q. Jiang, F. Ren, G. F. Gu, Q. Z. Tan, and W. X. Zhou, Statistical properties of online avatar numbers in a massive multiplayer online role-playing game, Physica A 389(4), 807 (2010)
CrossRef ADS Google scholar
[55]
P. Oświe¸cimk, J. Kwapień, and S. Drożdż, Wavelet versus detrended fluctuation analysis of multifractal structures, Phys. Rev. E 74(1), 016103 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3059 KB)

Accesses

Citations

Detail

Sections
Recommended

/