Spectral blueshift as a three-dimensional structure-ordering process

Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang

PDF(1339 KB)
PDF(1339 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 124205. DOI: 10.1007/s11467-017-0673-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Spectral blueshift as a three-dimensional structure-ordering process

Author information +
History +

Abstract

The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of threed-imensional systems.

Keywords

disordered medium / light propagation / transmission spectrum / blueshift

Cite this article

Download citation ▾
Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang. Spectral blueshift as a three-dimensional structure-ordering process. Front. Phys., 2017, 12(3): 124205 https://doi.org/10.1007/s11467-017-0673-y

References

[1]
M.Born and E.Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Academic Press, 1999
CrossRef ADS Google scholar
[2]
Q.Gong and X.Hu, Photonic Crystals: Principles and Applications, Pan Standford: Academic Press, 2014
[3]
J. Y.Huang and L. W.Zhou, Exceptional enhancement of localization effect in a one-dimensional multilayer system with destructive weak disorder strength, Opt. Lett.36(7), 1305 (2011)
CrossRef ADS Google scholar
[4]
D. S.Wiersma, P.Bartolini, A.Lagendijk, and R.Righini, Localization of light in a disordered medium, Nature390(6661), 671 (1997)
CrossRef ADS Google scholar
[5]
S.Zhang,J.Park, V.Milner, and A. Z.Genack, Photon delocalization transition in dimensional crossover in layered media, Phys. Rev. Lett.101(18), 183901 (2008)
CrossRef ADS Google scholar
[6]
A. A.Fernández-Marín, J. A.Méndez-Bermúdez, J.Carbonell, F.Cervera, J.Sánchez-Dehesa, and V. A.Gopar, Beyond Anderson localization in 1D: Anomalous localization of microwaves in random waveguides, Phys. Rev. Lett.113(23), 233901 (2014)
CrossRef ADS Google scholar
[7]
L.Levi, M.Rechtsman, B.Freedman, T.Schwartz, O.Manela, and M.Segev, Disorder-enhanced transport in photonic quasi-crystals, Science332(6037), 1541 (2011)
CrossRef ADS Google scholar
[8]
T.Schwartz, G.Bartal, S.Fishman, and M.Segev, Transport and Anderson localization in disordered twodimensional photonic lattices, Nature446(7131), 52 (2007)
CrossRef ADS Google scholar
[9]
Y.Lahini, A.Avidan, F.Pozzi, M.Sorel, R.Morandotti, D. N.Christodoulides, and Y.Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices, Phys. Rev. Lett.100(1), 013906 (2008)
CrossRef ADS Google scholar
[10]
Y.Lahini, R.Pugatch, F.Pozzi, M.Sorel, R.Morandotti, N.Davidson, and Y.Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett.103(1), 013901 (2009)
CrossRef ADS Google scholar
[11]
P.Ni, P.Zhang, X.Qi, J.Yang, Z.Chen, and W.Man, Light localization and nonlinear beam transmission in specular amorphous photonic lattices, Opt. Express24(3), 2420 (2016)
CrossRef ADS Google scholar
[12]
P.Sebbah, B.Hu, J. M.Klosner, and A. Z.Genack, Extended quasimodes within nominally localized random waveguides, Phys. Rev. Lett.96(18), 183902 (2006)
CrossRef ADS Google scholar
[13]
K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, A. Z.Genack, B.Hu, and P.Sebbah, Localized modes in open onedimensional dissipative random systems, Phys. Rev. Lett.97(24), 243904 (2006)
CrossRef ADS Google scholar
[14]
I. V.Shadrivov, K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, and Y. S.Kivshar, Bistability of Anderson localized states in nonlinear random media, Phys. Rev. Lett.104(12), 123902 (2010)
CrossRef ADS Google scholar
[15]
J.Bertolotti, S.Gottardo, D. S.Wiersma, M.Ghulinyan, and L.Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
CrossRef ADS Google scholar
[16]
M.Störzer, P.Gross, C. M.Aegerter, and G.Maret, Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett.96(6), 063904 (2006)
CrossRef ADS Google scholar
[17]
J.Wang and A. Z.Genack, Transport through modes in random media, Nature471(7338), 345 (2011)
CrossRef ADS Google scholar
[18]
T.Sperling, W.Bührer, C. M.Aegerter, and G.Maret, Direct determination of the transition to localization of light in three dimensions, Nat. Photonics7(1), 48 (2012)
CrossRef ADS Google scholar
[19]
A. N.Poddubny, M. V.Rybin, M. F.Limonov, and Y. S.Kivshar, Fano interference governs wave transport in disordered systems, Nat. Commun.3, 914 (2012)
CrossRef ADS Google scholar
[20]
J.Topolancik, B.Ilic, and F.Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett.99(25), 253901 (2007)
CrossRef ADS Google scholar
[21]
E.Lidorikis, M. M.Sigalas, E. N.Economou, and C. M.Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials, Phys. Rev. B61(20), 13458 (2000)
CrossRef ADS Google scholar
[22]
J. Y.Huang, B. Q.Dong, and L. W.Zhou, Non-uniform ensembles of diverse resonances in one-dimensional layered media, Opt. Lett.36(13), 2477 (2011)
CrossRef ADS Google scholar
[23]
Z.Shi, M.Davy, and A. Z.Genack, Statistics and control of waves in disordered media, Opt. Express23(9), 12293 (2015)
CrossRef ADS Google scholar
[24]
P. W.Anderson, Absence of diffusion in certain random lattices, Phys. Rev.109(5), 1492 (1958)
CrossRef ADS Google scholar
[25]
H.Cao, Y. G.Zhao, S. T.Ho, E. W.Seelig, Q. H.Wang, and R. P. H.Chang, Random laser action in semiconductor powder, Phys. Rev. Lett.82(11), 2278 (1999)
CrossRef ADS Google scholar
[26]
C.Toninelli, E.Vekris, G. A.Ozin, S.John, and D. S.Wiersma, Exceptional reduction of the diffusion constant in partially disordered photonic crystals, Phys. Rev. Lett.101(12), 123901 (2008)
CrossRef ADS Google scholar
[27]
M. V.Rybin, A. B.Khanikaev, M.Inoue, K. B.Samusev, M. J.Steel, G.Yushin, and M. F.Limonov, Fano resonance between Mie and Bragg scattering in phononic crystals, Phys. Rev. Lett.103(2), 023901 (2009)
CrossRef ADS Google scholar
[28]
U.Fano,Effect of configuration interaction on intensities and phase shifts, Phys. Rev.124(6), 1866 (1961)
CrossRef ADS Google scholar
[29]
M. F.Smith, K.Setwong, R.Tongpool, D.Onkaw, S.Na-phattalung, S.Limpijumnong, and S.Rujirawat, Identification of bulk and surface sulfur impurities in TiO2 by synchrotron X-ray absorption near edge structure, Appl. Phys. Lett.91(14), 142107 (2007)
CrossRef ADS Google scholar
[30]
W.Wen, X.Huang, and P.Sheng, Electrorheological fluids: Structures and mechanisms, Soft Matter4(2), 200 (2008)
CrossRef ADS Google scholar
[31]
T.Chen, R. N.Zitter, and R.Tao, Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett.68(16), 2555 (1992)
CrossRef ADS Google scholar
[32]
C. F.Bohren and D. R.Huffman, Absorption and Scattering of Light by Small Particles, New York:Wiley, 1983, page 118
[33]
W. J.Tian, M. K.Liu, and J. P.Huang, Origin of the reduced attracting force between a rotating dielectric particle and a stationary one, Phys. Rev. E75(2), 021401 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1339 KB)

Accesses

Citations

Detail

Sections
Recommended

/