Spin filtering in transition-metal phthalocyanine molecules from first principles

Li Niu , Huan Wang , Lina Bai , Ximing Rong , Xiaojie Liu , Hua Li , Haitao Yin

Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127207

PDF (977KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127207 DOI: 10.1007/s11467-017-0671-0
RESEARCH ARTICLE

Spin filtering in transition-metal phthalocyanine molecules from first principles

Author information +
History +
PDF (977KB)

Abstract

Using first-principles calculations based on density functional theory and the nonequilibrium Green’s function formalism, we studied the spin transport through metal-phthalocyanine (MPc, M=Ni, Fe, Co, Mn, Cr) molecules connected to aurum nanowire electrodes. We found that the MnPc, FePc, and CrPc molecular devices exhibit a perfect spin filtering effect compared to CoPc and NiPc. Moreover, negative differential resistance appears in FePc molecular devices. The transmission coefficients at different bias voltages were further presented to understand this phenomenon. These results would be useful in designing devices for future nanotechnology.

Keywords

phthalocyanine molecule / spin transport / negative differential resistance

Cite this article

Download citation ▾
Li Niu, Huan Wang, Lina Bai, Ximing Rong, Xiaojie Liu, Hua Li, Haitao Yin. Spin filtering in transition-metal phthalocyanine molecules from first principles. Front. Phys., 2017, 12(4): 127207 DOI:10.1007/s11467-017-0671-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. F. Yang, L. P. Zhou, Q. Han, and X. F. Wang, Baiscontrolled giant magnetroesistance through cyclopentadienyl iron multidecker molecules, J. Phys. Chem. C 116(37), 19996 (2012)

[2]

P. Parida, E. A. Basheer, and S. K. Pati, Cyclopentadienyl-benzene based sandwich molecular wires showing efficient spin filtering, negative differential resistance, and pressure induced electronic transitions, J. Mater. Chem. 22(30), 14916 (2012)

[3]

S. Smirnov and M. Grifoni, Kondo effect in interacting nanoscopic systems: Keldysh field integral theory, Phys. Rev. B 84(23), 235314 (2011)

[4]

Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)

[5]

H. Hao, X. H. Zheng, Z. X. Dai, and Z. Zeng, Spinfiltering transport and switching effect of MnCu singlemolecule magnet, Appl. Phys. Lett. 96(19), 192112 (2010)

[6]

D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)

[7]

M. Trometer, R. Even, J. Simon, A. Dubon, J. Y. Laval, J. P. Germain, C. Maleysson, A. Pauly, and H. Robert, Lutetium bisphthalocyanine thin films for gas detection, Sens. Actuators B Chem. 8(2), 129 (1992)

[8]

Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, High-efficiency white organic light-emitting devices with dual doped structure, Appl. Phys. Lett. 80(15), 2782 (2002)

[9]

A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, and O. A. Kuznetsov, Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs, J. Magn. Magn. Mater. 225(1–2), 95 (2001)

[10]

S. Heutz, C. Mitra, W. Wu, A. J. Fisher, A. Kerridge, M. Stoneham, T. H. Harker, J. Gardener, H. H. Tseng, T. S. Jones, C. Renner, and G. Aeppli, Molecular thin films: A new type of magnetic switch, Adv. Mater. 19(21), 3618 (2007)

[11]

K. P. Dou and C. C. Kaun, Conductance switching of a phthalocyanine molecule on an insulating surface, Front. Phys. 12(4), 127303 (2017)

[12]

S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Giant magnetoresistance through a single molecule, Nat. Nanotechnol. 6(3), 185 (2011)

[13]

C. H. Hsu, Y. H. Chu, C. I. Lu, P. J. Hsu, S. W. Chen, W. J. Hsueh, C. C. Kaun, and M. T. Lin, Spin-polarized transport single manganese phthalocyanine molecules on a Co nanoisland, J. Phys. Chem. C 119(6), 3374 (2015)

[14]

L. L. Cui, B. C. Yang, X. M. Li, C. Cao, and M. Q. Long, Effects of symmetry and spin configuration on spindependent transport properties of iron-phthalocyaninebased devices, J. Appl. Phys. 116(3), 033701 (2014)

[15]

F. Schreiber, Sturcture and growth of self-assembling monolayers, Prog. Surf. Sci. 65(5–8), 151 (2000)

[16]

G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

[17]

J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)

[18]

J. Junquera, Ó. Paz, D. Sánchez-Portal, and E. Artacho, Numerical atomic orbitals for linear-scaling calculations, Phys. Rev. B 64(23), 235111 (2001)

[19]

X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou, Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes, J. Chem. Phys. 132(5), 054703 (2010)

[20]

J. C. Wu, X. F. Wang, L. Zhou, H. X. Da, K. H. Lim, S. W. Yang, and X. Y. Li, Manipulating spin transport via vanadium-iron cyclopentadienyl multidecker sandwich molecules, J. Phys. Chem. C 113(18), 7913 (2009)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (977KB)

908

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/