Spin filtering in transition-metal phthalocyanine molecules from first principles

Li Niu, Huan Wang, Lina Bai, Ximing Rong, Xiaojie Liu, Hua Li, Haitao Yin

PDF(977 KB)
PDF(977 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127207. DOI: 10.1007/s11467-017-0671-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Spin filtering in transition-metal phthalocyanine molecules from first principles

Author information +
History +

Abstract

Using first-principles calculations based on density functional theory and the nonequilibrium Green’s function formalism, we studied the spin transport through metal-phthalocyanine (MPc, M=Ni, Fe, Co, Mn, Cr) molecules connected to aurum nanowire electrodes. We found that the MnPc, FePc, and CrPc molecular devices exhibit a perfect spin filtering effect compared to CoPc and NiPc. Moreover, negative differential resistance appears in FePc molecular devices. The transmission coefficients at different bias voltages were further presented to understand this phenomenon. These results would be useful in designing devices for future nanotechnology.

Keywords

phthalocyanine molecule / spin transport / negative differential resistance

Cite this article

Download citation ▾
Li Niu, Huan Wang, Lina Bai, Ximing Rong, Xiaojie Liu, Hua Li, Haitao Yin. Spin filtering in transition-metal phthalocyanine molecules from first principles. Front. Phys., 2017, 12(4): 127207 https://doi.org/10.1007/s11467-017-0671-0

References

[1]
J. F. Yang, L. P. Zhou, Q. Han, and X. F. Wang, Baiscontrolled giant magnetroesistance through cyclopentadienyl iron multidecker molecules, J. Phys. Chem. C 116(37), 19996 (2012)
CrossRef ADS Google scholar
[2]
P. Parida, E. A. Basheer, and S. K. Pati, Cyclopentadienyl-benzene based sandwich molecular wires showing efficient spin filtering, negative differential resistance, and pressure induced electronic transitions, J. Mater. Chem. 22(30), 14916 (2012)
CrossRef ADS Google scholar
[3]
S. Smirnov and M. Grifoni, Kondo effect in interacting nanoscopic systems: Keldysh field integral theory, Phys. Rev. B 84(23), 235314 (2011)
CrossRef ADS Google scholar
[4]
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
CrossRef ADS Google scholar
[5]
H. Hao, X. H. Zheng, Z. X. Dai, and Z. Zeng, Spinfiltering transport and switching effect of MnCu singlemolecule magnet, Appl. Phys. Lett. 96(19), 192112 (2010)
CrossRef ADS Google scholar
[6]
D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)
CrossRef ADS Google scholar
[7]
M. Trometer, R. Even, J. Simon, A. Dubon, J. Y. Laval, J. P. Germain, C. Maleysson, A. Pauly, and H. Robert, Lutetium bisphthalocyanine thin films for gas detection, Sens. Actuators B Chem. 8(2), 129 (1992)
CrossRef ADS Google scholar
[8]
Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, High-efficiency white organic light-emitting devices with dual doped structure, Appl. Phys. Lett. 80(15), 2782 (2002)
CrossRef ADS Google scholar
[9]
A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, and O. A. Kuznetsov, Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs, J. Magn. Magn. Mater. 225(1–2), 95 (2001)
CrossRef ADS Google scholar
[10]
S. Heutz, C. Mitra, W. Wu, A. J. Fisher, A. Kerridge, M. Stoneham, T. H. Harker, J. Gardener, H. H. Tseng, T. S. Jones, C. Renner, and G. Aeppli, Molecular thin films: A new type of magnetic switch, Adv. Mater. 19(21), 3618 (2007)
CrossRef ADS Google scholar
[11]
K. P. Dou and C. C. Kaun, Conductance switching of a phthalocyanine molecule on an insulating surface, Front. Phys. 12(4), 127303 (2017)
CrossRef ADS Google scholar
[12]
S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Giant magnetoresistance through a single molecule, Nat. Nanotechnol. 6(3), 185 (2011)
CrossRef ADS Google scholar
[13]
C. H. Hsu, Y. H. Chu, C. I. Lu, P. J. Hsu, S. W. Chen, W. J. Hsueh, C. C. Kaun, and M. T. Lin, Spin-polarized transport single manganese phthalocyanine molecules on a Co nanoisland, J. Phys. Chem. C 119(6), 3374 (2015)
CrossRef ADS Google scholar
[14]
L. L. Cui, B. C. Yang, X. M. Li, C. Cao, and M. Q. Long, Effects of symmetry and spin configuration on spindependent transport properties of iron-phthalocyaninebased devices, J. Appl. Phys. 116(3), 033701 (2014)
CrossRef ADS Google scholar
[15]
F. Schreiber, Sturcture and growth of self-assembling monolayers, Prog. Surf. Sci. 65(5–8), 151 (2000)
CrossRef ADS Google scholar
[16]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[17]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[18]
J. Junquera, Ó. Paz, D. Sánchez-Portal, and E. Artacho, Numerical atomic orbitals for linear-scaling calculations, Phys. Rev. B 64(23), 235111 (2001)
CrossRef ADS Google scholar
[19]
X. Shen, L. Sun, E. Benassi, Z. Shen, X. Zhao, S. Sanvito, and S. Hou, Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes, J. Chem. Phys. 132(5), 054703 (2010)
CrossRef ADS Google scholar
[20]
J. C. Wu, X. F. Wang, L. Zhou, H. X. Da, K. H. Lim, S. W. Yang, and X. Y. Li, Manipulating spin transport via vanadium-iron cyclopentadienyl multidecker sandwich molecules, J. Phys. Chem. C 113(18), 7913 (2009)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(977 KB)

Accesses

Citations

Detail

Sections
Recommended

/