Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells

Fang Wei, Xiang Li, Meichun Cai, Yanping Liu, Peter Jung, Jianwei Shuai

PDF(1858 KB)
PDF(1858 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128702. DOI: 10.1007/s11467-017-0670-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells

Author information +
History +

Abstract

In neurons of patients with Alzheimer’s disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer’s disease (FAD) cells induced with mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

Keywords

Ca2+ signal / channel / neuron / Alzheimer’s disease

Cite this article

Download citation ▾
Fang Wei, Xiang Li, Meichun Cai, Yanping Liu, Peter Jung, Jianwei Shuai. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer’s disease cells. Front. Phys., 2017, 12(3): 128702 https://doi.org/10.1007/s11467-017-0670-1

References

[1]
M. Hutton and J. Hardy, The presenilins and Alzheimer’s disease, Hum. Mol. Genet. 6(10), 1639 (1997)
CrossRef ADS Google scholar
[2]
J. Hardy, A hundred years of Alzheimer’s disease research, Neuron 52(1), 3 (2006)
CrossRef ADS Google scholar
[3]
F. M. LaFerla and S. Oddo, Alzheimer’s disease: Abeta, tau and synaptic dysfunction, Trends Mol. Med. 11(4), 170 (2005)
CrossRef ADS Google scholar
[4]
M. P. Mattson, Pathways towards and away from Alzheimer’s disease, Nature 430(7000), 631 (2004)
CrossRef ADS Google scholar
[5]
C. Haass and D. J. Selkoe, Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide, Nat. Rev. Mol. Cell Biol. 8(2), 101 (2007)
CrossRef ADS Google scholar
[6]
J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics, Science 297(5580), 353 (2002)
CrossRef ADS Google scholar
[7]
F. M. LaFerla, Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease, Nat. Rev. Neurosci. 3(11), 862 (2002)
CrossRef ADS Google scholar
[8]
I. F. Smith, K. N. Green, and F. M. LaFerla, Calcium dysregulation in Alzheimer’s disease: Recent advances gained from genetically modified animals,Cell Calcium 38(3–4), 427 (2005)
CrossRef ADS Google scholar
[9]
J. Herms, I. Schneider, I. Dewachter, N. Caluwaerts, H. Kretzschmar, and F. Van Leuven, Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein, J. Biol. Chem. 278(4), 2484 (2003)
CrossRef ADS Google scholar
[10]
M. A. Leissring, B. A. Paul, I. Parker, C. W. Cotman, and F. M. LaFerla, Alzheimer’s presenilin-1 mutation potentiates inositol 1, 4, 5-trisphosphate-mediated calcium signaling in Xenopus oocytes, J. Neurochem. 72(3), 1061 (1999)
CrossRef ADS Google scholar
[11]
I. F. Smith, B. Hitt, K. N. Green, S. Oddo, and F. M. LaFerla, Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease, J. Neurochem. 94(6), 1711 (2005)
CrossRef ADS Google scholar
[12]
G. E. Stutzmann, Calcium dysregulation, IP3 signaling, and Alzheimer’s disease, Neuroscientist 11(2), 110 (2005)
CrossRef ADS Google scholar
[13]
G. E. Stutzmann, A. Caccamo, F. M. LaFerla, and I. Parker, Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability, J. Neurosci. 24(2), 508 (2004)
CrossRef ADS Google scholar
[14]
J. K. Foskett, C. White, K. H. Cheung, and D. O. D. Mak, Inositol trisphosphate receptor Ca2+ release channels, Physiol. Rev. 87(2), 593 (2007)
CrossRef ADS Google scholar
[15]
M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium signaling: Dynamics, homeostasis and remodeling, Nat. Rev. Mol. Cell Biol. 4(7), 517 (2003)
CrossRef ADS Google scholar
[16]
K. N. Green, A. Demuro, Y. Akbari, B. D. Hitt, I. F. Smith, I. Parker, and F. M. LaFerla, SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production, J. Cell Biol. 181(7), 1107 (2008)
CrossRef ADS Google scholar
[17]
S. Chakroborty, I. Goussakov, M. B. Miller, and G. E. Stutzmann, Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice, J. Neurosci. 29(30), 9458 (2009)
CrossRef ADS Google scholar
[18]
G. E. Stutzmann, I. Smith, A. Caccamo, S. Oddo, F. M. Laferla, and I. Parker, Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice,J. Neurosci. 26(19), 5180 (2006)
CrossRef ADS Google scholar
[19]
H. Qi and J. Shuai, Alzheimer’s disease via enhanced calcium signaling caused by the decrease of endoplasmic reticulum–mitochondrial distance, Med. Hypotheses. 89, 28 (2016)
CrossRef ADS Google scholar
[20]
H. Qi, L. Li, and J. Shuai, Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations, Sci. Rep. 5, 7984 (2015)
CrossRef ADS Google scholar
[21]
N. Hirashima, R. Etcheberrigaray, S. Bergamaschi, M. Racchi, F. Battaini, G. Binetti, S. Govoni, and D. L. Alkon, Calcium responses in human fibroblasts: a diagnostic molecular profile for Alzheimer’s disease, Neurobiol. Aging. 17(4), 549 (1996)
CrossRef ADS Google scholar
[22]
E. Ito, K. Oka, R. Etcheberrigaray, T. J. Nelson, D. L. McPhie, B. Tofel-Grehl, G. E. Gibson, and D. L. Alkon, Internal Ca2+ mobilization is altered in fibroblasts from patients with Alzheimer disease, Proc. Natl. Acad. Sci. USA 91(2), 534 (1994)
CrossRef ADS Google scholar
[23]
K. H. Cheung, D. Shineman, M. Muller, C. Cardenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V. M. Lee, and J. K. Foskett, Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating, Neuron. 58(6), 871 (2008)
CrossRef ADS Google scholar
[24]
K. H. Cheung, L. Mei, D. O. D. Mak, I. Hayashi, T. Iwatsubo, D. E. Kang, and J. K. Foskett, Gain-offunction enhancement of InsP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in humancells and mouse neurons, Sci. Signal. 3(114), ra22 (2010)
CrossRef ADS Google scholar
[25]
G. W. De Young, and J. Keizer, A single-pool inositol 1, 4, 5-trisphosphate- receptor-based model for agonist-stimulated oscillations in Ca2+ concentration, Proc. Natl. Acad. Sci. USA 89(20), 9895 (1992)
CrossRef ADS Google scholar
[26]
J. Sneyd and J. Dufour, A dynamic model of the type-2 inositol trisphosphate receptor, Proc. Natl. Acad. Sci. USA 99(4), 2398 (2002)
CrossRef ADS Google scholar
[27]
D. O. D. Mak, S. M. J. McBride, and J. K. Foskett, Spontaneous channel activity of the inositol 1, 4, 5- trisphosphate (InsP3) receptor (InsP3R): Application of allosteric modeling to calcium and InsP3 regulation of InsP3R single-channel gating, J. Gen. Physiol. 122(5), 583 (2003)
CrossRef ADS Google scholar
[28]
J. Shuai, J. E. Pearson, J. K. Foskett, D. O. D. Mak, and I. Parker, A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback, Biophys. J. 93(4), 1151 (2007)
CrossRef ADS Google scholar
[29]
J. W. Shuai, D. P. Yang, J. E. Pearson, and S. Rüdiger, An investigation of models of the IP3R channel in Xenopus oocyte, Chaos 19(3), 037105 (2009)
CrossRef ADS Google scholar
[30]
G. Ullah, D. O. Daniel Mak, and J. E. Pearson, A datadriven model of a modal gated ion channel: The inositol 1, 4, 5-trisphosphate receptor in insect Sf9 cells, J. Gen. Physiol. 140(2), 159 (2012)
CrossRef ADS Google scholar
[31]
B. A. Bicknell, and G. J. Goodhill, Emergence of ion channel modal gating from independent subunit kinetics, Proc. Natl. Acad. Sci. USA 113(36), E5288 (2016)
CrossRef ADS Google scholar
[32]
L. Ionescu, C. White, K. H. Cheung, J. Shuai, I. Parker, J. E. Pearson, J. K. Foskett, and D. O. D. Mak, Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels, J. Gen. Physiol. 130(6), 631 (2007)
CrossRef ADS Google scholar
[33]
D. O. D. Mak, J. E. Pearson, K. P. C. Loong, S. Datta, M. Fernández-Mongil, and J. K. Foskett, Rapid ligand-regulated gating kinetics of single inositol 1, 4, 5-trisphosphate receptor Ca2+ release channels, EMBO Rep. 8(11), 1044 (2007)
CrossRef ADS Google scholar
[34]
G. Ullah, A. Demuro, I. Parker, and J. E. Pearson, Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology, PLoS One 10(9), e0137357 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1858 KB)

Accesses

Citations

Detail

Sections
Recommended

/