Spin in the extended electron model

Thomas Pope, Werner Hofer

PDF(135 KB)
PDF(135 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128503. DOI: 10.1007/s11467-017-0669-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Spin in the extended electron model

Author information +
History +

Abstract

It has been found that a model of extended electrons is more suited to describe theoretical simulations and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the description of an electron’s spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space – an extended electron model – we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern–Gerlach experiments, the Einstein–Podolsky–Rosen experiments, and the effect of consecutive measurements and find in all cases a fairly intuitive explanation.

Keywords

spin / extended electron model / geometric algebra / Stern–Gerlach experiment / Einstein–Podolsky–Rosen / magnetism

Cite this article

Download citation ▾
Thomas Pope, Werner Hofer. Spin in the extended electron model. Front. Phys., 2017, 12(3): 128503 https://doi.org/10.1007/s11467-017-0669-7

References

[1]
J. D. Jackson, Classical Electrodynamics, Wiley, 1999
[2]
R. Eisberg, R. Resnick, and J. Brown, Quantum physics of atoms, molecules, solids, nuclei, and particles, Phys. Today 39(3), 110 (1986)
CrossRef ADS Google scholar
[3]
A. A. Rangwala and A. S. Mahajan, Electricity and Magnetism,McGraw Hill Education, 2004
[4]
W. Gerlach and O. Stern, Der experimentelle nachweis der richtungsquantelung im magnetfeld, Zeitschrift für Physik A Hadrons and Nuclei, 9(1), 349 (1922)
CrossRef ADS Google scholar
[5]
C. E. Burkhardt and J. J. Leventhal, Foundations of Quantum Physics, Springer Science & Business Media, 2008
CrossRef ADS Google scholar
[6]
K.-H. Rieder, G. Meyer, S.-W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Philos. Trans. A Math. Phys. Eng. Sci. 362(1819), 1207 (2004)
[7]
W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)
CrossRef ADS Google scholar
[8]
W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)
CrossRef ADS Google scholar
[9]
W. A. Hofer, Elements of physics for the 21st century, J. Phys.: Conf. Ser. 504, 012014 (2014)
CrossRef ADS Google scholar
[10]
D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Vol. 5, Springer Science & Business Media, 2012
[11]
S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real: The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)
CrossRef ADS Google scholar
[12]
G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004
CrossRef ADS Google scholar
[13]
G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34(2), 470 (1986)
CrossRef ADS Google scholar
[14]
R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28(5), 581 (1996)
CrossRef ADS Google scholar
[15]
W. Heisenberg, Language and Reality in Modern Physics, 1958
[16]
G. C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, S. Saito, A. J. Leggett, and W. J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit, arXiv: 1601.03728 (2016)
[17]
L. de Broglie, Research on the theory of quanta, Ann. Phys. 10, 22 (1925)
[18]
E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28(6), 1049 (1926)
CrossRef ADS Google scholar
[19]
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85(2), 166 (1952)
CrossRef ADS Google scholar
[20]
D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85(2), 180 (1952)
CrossRef ADS Google scholar
[21]
J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)
CrossRef ADS Google scholar
[22]
H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)
CrossRef ADS Google scholar
[23]
G. Hooft, The free-will postulate in quantum mechanics, arXiv: quant-ph/0701097 (2007)
[24]
G. Hooft, Entangled quantum states in a local deterministic theory, arXiv: 0908.3408 (2009)
[25]
O. C. de Beauregard, Time symmetry and interpretation of quantum mechanics, Found. Phys. 6(5), 539 (1976)
CrossRef ADS Google scholar
[26]
P. Dowe, A defense of backwards in time causation models in quantum mechanics, Synthese 112(2), 233 (1997)
CrossRef ADS Google scholar
[27]
E. Santos, The failure to perform a loophole-free test of Bell’s inequality supports local realism, Found. Phys. 34(11), 1643 (2004)
CrossRef ADS Google scholar
[28]
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)
CrossRef ADS Google scholar
[29]
W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)
CrossRef ADS Google scholar
[30]
C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)
CrossRef ADS Google scholar
[31]
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef ADS Google scholar
[32]
A. Einstein, Physics and reality, Journal of the Franklin Institute, 221(3), 349 (1936)
CrossRef ADS Google scholar
[33]
B. Thaller, Advanced Visual Quantum Mechanics, Springer Science & Business Media, 2005
[34]
B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering, New J. Phys. 14(5), 053030 (2012)
CrossRef ADS Google scholar
[35]
J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden variable theories, Phys. Rev. Lett. 23(15), 880 (1969)
CrossRef ADS Google scholar
[36]
L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/