Spin in the extended electron model

Thomas Pope , Werner Hofer

Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128503

PDF (135KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128503 DOI: 10.1007/s11467-017-0669-7
RESEARCH ARTICLE

Spin in the extended electron model

Author information +
History +
PDF (135KB)

Abstract

It has been found that a model of extended electrons is more suited to describe theoretical simulations and experimental results obtained via scanning tunnelling microscopes, but while the dynamic properties are easily incorporated, magnetic properties, and in particular electron spin properties pose a problem due to their conceived isotropy in the absence of measurement. The spin of an electron reacts with a magnetic field and thus has the properties of a vector. However, electron spin is also isotropic, suggesting that it does not have the properties of a vector. This central conflict in the description of an electron’s spin, we believe, is the root of many of the paradoxical properties measured and postulated for quantum spin particles. Exploiting a model in which the electron spin is described consistently in real three-dimensional space – an extended electron model – we demonstrate that spin may be described by a vector and still maintain its isotropy. In this framework, we re-evaluate the Stern–Gerlach experiments, the Einstein–Podolsky–Rosen experiments, and the effect of consecutive measurements and find in all cases a fairly intuitive explanation.

Keywords

spin / extended electron model / geometric algebra / Stern–Gerlach experiment / Einstein–Podolsky–Rosen / magnetism

Cite this article

Download citation ▾
Thomas Pope, Werner Hofer. Spin in the extended electron model. Front. Phys., 2017, 12(3): 128503 DOI:10.1007/s11467-017-0669-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. D. Jackson, Classical Electrodynamics, Wiley, 1999

[2]

R. Eisberg, R. Resnick, and J. Brown, Quantum physics of atoms, molecules, solids, nuclei, and particles, Phys. Today 39(3), 110 (1986)

[3]

A. A. Rangwala and A. S. Mahajan, Electricity and Magnetism,McGraw Hill Education, 2004

[4]

W. Gerlach and O. Stern, Der experimentelle nachweis der richtungsquantelung im magnetfeld, Zeitschrift für Physik A Hadrons and Nuclei, 9(1), 349 (1922)

[5]

C. E. Burkhardt and J. J. Leventhal, Foundations of Quantum Physics, Springer Science & Business Media, 2008

[6]

K.-H. Rieder, G. Meyer, S.-W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, The scanning tunnelling microscope as an operative tool: Doing physics and chemistry with single atoms and molecules, Philos. Trans. A Math. Phys. Eng. Sci. 362(1819), 1207 (2004)

[7]

W. A. Hofer, Heisenberg, uncertainty, and the scanning tunneling microscope, Front. Phys. 7(2), 218 (2012)

[8]

W. A. Hofer, Unconventional approach to orbital-free density functional theory derived from a model of extended electrons, Found. Phys. 41(4), 754 (2011)

[9]

W. A. Hofer, Elements of physics for the 21st century, J. Phys.: Conf. Ser. 504, 012014 (2014)

[10]

D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Vol. 5, Springer Science & Business Media, 2012

[11]

S. Gull, A. Lasenby, and C. Doran, Imaginary numbers are not real: The geometric algebra of spacetime, Found. Phys. 23(9), 1175 (1993)

[12]

G. Benenti, G. Strini, and G. Casati, Principles of Quantum Computation and Information, World Scientific, 2004

[13]

G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34(2), 470 (1986)

[14]

R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28(5), 581 (1996)

[15]

W. Heisenberg, Language and Reality in Modern Physics, 1958

[16]

G. C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida, H. Yamaguchi, S. Saito, A. J. Leggett, and W. J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit, arXiv: 1601.03728 (2016)

[17]

L. de Broglie, Research on the theory of quanta, Ann. Phys. 10, 22 (1925)

[18]

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28(6), 1049 (1926)

[19]

D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (I), Phys. Rev. 85(2), 166 (1952)

[20]

D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables (II), Phys. Rev. 85(2), 180 (1952)

[21]

J. S. Bell, On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys. 38(3), 447 (1966)

[22]

H. Everett, “Relative state” formulation of quantum mechanics, Rev. Mod. Phys. 29(3), 454 (1957)

[23]

G. Hooft, The free-will postulate in quantum mechanics, arXiv: quant-ph/0701097 (2007)

[24]

G. Hooft, Entangled quantum states in a local deterministic theory, arXiv: 0908.3408 (2009)

[25]

O. C. de Beauregard, Time symmetry and interpretation of quantum mechanics, Found. Phys. 6(5), 539 (1976)

[26]

P. Dowe, A defense of backwards in time causation models in quantum mechanics, Synthese 112(2), 233 (1997)

[27]

E. Santos, The failure to perform a loophole-free test of Bell’s inequality supports local realism, Found. Phys. 34(11), 1643 (2004)

[28]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86(2), 419 (2014)

[29]

W. A. Hofer, Solving the Einstein–Podolsky–Rosen puzzle: The origin of non-locality in Aspect-type experiments, Front. Phys. 7(5), 504 (2012)

[30]

C. Doran, A. Lasenby, and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23(9), 1239 (1993)

[31]

A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

[32]

A. Einstein, Physics and reality, Journal of the Franklin Institute, 221(3), 349 (1936)

[33]

B. Thaller, Advanced Visual Quantum Mechanics, Springer Science & Business Media, 2005

[34]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering, New J. Phys. 14(5), 053030 (2012)

[35]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden variable theories, Phys. Rev. Lett. 23(15), 880 (1969)

[36]

L. de Broglie, Wave mechanics and the atomic structure of matter and of radiation, J. Phys. Radium 8, 225 (1927)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (135KB)

1043

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/