Role of disorder in determining the vibrational properties of mass-spring networks

Yunhuan Nie, Hua Tong, Jun Liu, Mengjie Zu, Ning Xu

PDF(826 KB)
PDF(826 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 126301. DOI: 10.1007/s11467-017-0668-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Role of disorder in determining the vibrational properties of mass-spring networks

Author information +
History +

Abstract

By introducing four fundamental types of disorders into a two-dimensional triangular lattice separately, we determine the role of each type of disorder in the vibration of the resulting mass-spring networks. We are concerned mainly with the origin of the boson peak and the connection between the boson peak and the transverse Ioffe–Regel limit. For all types of disorders, we observe the emergence of the boson peak and Ioffe–Regel limits. With increasing disorder, the boson peak frequency ωBP, transverse Ioffe–Regel frequency ω I R T, and longitudinal Ioffe–Regel frequency ω I R L all decrease. We find that there are two ways for the boson peak to form: developing from and coexisting with (but remaining independent of) the transverse van Hove singularity without and with local coordination number fluctuation. In the presence of a single type of disorder, ω I R T ω B R, and ω I R T ω B P only when the disorder is sufficiently strong and causes spatial fluctuation of the local coordination number. Moreover, if there is no positional disorder, ω I R T ω I R L. Therefore, the argument that the boson peak is equivalent to the transverse Ioffe–Regel limit is not general. Our results suggest that both local coordination number and positional disorder are necessary for the argument to hold, which is actually the case for most disordered solids such as marginally jammed solids and structural glasses. We further combine two types of disorders to cause disorder in both the local coordination number and lattice site position. The density of vibrational states of the resulting networks resembles that of marginally jammed solids well. However, the relation between the boson peak and the transverse Ioffe–Regel limit is still indefinite and condition-dependent. Therefore, the interplay between different types of disorders is complicated, and more in-depth studies are required to sort it out.

Keywords

disorder / boson peak / Ioffe–Regel limit / amorphous solid

Cite this article

Download citation ▾
Yunhuan Nie, Hua Tong, Jun Liu, Mengjie Zu, Ning Xu. Role of disorder in determining the vibrational properties of mass-spring networks. Front. Phys., 2017, 12(3): 126301 https://doi.org/10.1007/s11467-017-0668-8

References

[1]
C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., 2005
[2]
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Thomson Brooks/Cole, 1976
[3]
A. F. Ioffe and A. R. Regel, Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4, 237 (1960)
[4]
T. Nakayama, K. Yakubo, and R. L. Orbach, Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations, Rev. Mod. Phys. 66(2), 381 (1994)
CrossRef ADS Google scholar
[5]
E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)
CrossRef ADS Google scholar
[6]
T. Keyes, Instantaneous normal mode approach to liquid state dynamics, J. Phys. Chem. A 101(16), 2921 (1997)
CrossRef ADS Google scholar
[7]
W. Schirmacher, G. Diezemann, and C. Ganter, Harmonic vibrational excitations in disordered solids and the “boson peak”, Phys. Rev. Lett. 81(1), 136 (1998)
CrossRef ADS Google scholar
[8]
J. W. Kantelhardt, S. Russ, and A. Bunde, Excess modes in the vibrational spectrum of disordered systems and the boson peak, Phys. Rev. B 63(6), 064302 (2001)
CrossRef ADS Google scholar
[9]
T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Vibrations in glasses and Euclidean random matrix theory, J. Phys.: Condens. Matter 14(9), 2167 (2002)
CrossRef ADS Google scholar
[10]
T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Phonon interpretation of the “boson peak” in supercooled liquids, Nature 422(6929), 289 (2003)
CrossRef ADS Google scholar
[11]
V. L. Gurevich, D. A. Parshin, and H. R. Schober, Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B 67(9), 094203 (2003)
CrossRef ADS Google scholar
[12]
A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)
CrossRef ADS Google scholar
[13]
J. Wuttke, W. Petry, G. Coddens, and F. Fujara, Fast dynamics of glass-forming glycerol, Phys. Rev. E 52(4), 4026 (1995)
CrossRef ADS Google scholar
[14]
P. Lunkenheimer, U. Schneider, R. Brand, and A. Loid, Glassy dynamics, Contemp. Phys. 41(1), 15 (2000)
CrossRef ADS Google scholar
[15]
T. Nakayama, Boson peak and terahertz frequency dynamics of vitreous silica, Rep. Prog. Phys. 65(8), 1195 (2002)
CrossRef ADS Google scholar
[16]
W. A. Phillips (Ed.), Amorphous Solids: Low Temperature Properties, Berlin: Springer-Verlag, 1981
[17]
N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Excess vibrational modes and the boson peak in model glasses, Phys. Rev. Lett. 98(17), 175502 (2007)
CrossRef ADS Google scholar
[18]
M. Wyart, On the rigidity of amorphous solids, Ann. Phys. 30(3), 1 (2005)
CrossRef ADS Google scholar
[19]
H. Shintani and Y. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)
CrossRef ADS Google scholar
[20]
Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality, Phys. Rev. E 93(2), 023006 (2016)
CrossRef ADS Google scholar
[21]
U. Tanaka, Physical origin of the boson peak deduced from a two-order-parameter model of liquid, J. Phys. Soc. Jpn. 70(5), 1178 (2001)
CrossRef ADS Google scholar
[22]
E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)
CrossRef ADS Google scholar
[23]
C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)
CrossRef ADS Google scholar
[24]
L. E. Silbert, A. J. Liu, and S. R. Nagel, Vibrations and diverging length scales near the unjamming transition, Phys. Rev. Lett. 95(9), 098301 (2005)
CrossRef ADS Google scholar
[25]
E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and M. Wyart, Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids, Soft Matter 10(30), 5628 (2014)
CrossRef ADS Google scholar
[26]
W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98(2), 025501 (2007)
CrossRef ADS Google scholar
[27]
W. Schirmacher, Thermal conductivity of glassy materials and the “boson peak”, Europhys. Lett. 73(6), 892 (2006)
CrossRef ADS Google scholar
[28]
A. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, Acoustic dynamics of network-forming glasses at mesoscopic wavelengths, Nat. Commun. 4, 1793 (2013)
CrossRef ADS Google scholar
[29]
F. Léonforte, A. Tanguy, J. P. Wittmer, and J. L. Barrat, Inhomogeneous elastic response of silica glass, Phys. Rev. Lett. 97(5), 055501 (2006)
CrossRef ADS Google scholar
[30]
G. Monaco and S. Mossa, Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale, Proc. Natl. Acad. Sci. USA 106(40), 16907 (2009)
CrossRef ADS Google scholar
[31]
C. A. Angell, Y. Z. Yue, L. M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses, J. Phys.: Condens. Matter 15(11), S1051 (2003)
CrossRef ADS Google scholar
[32]
D. A. Parshin, H. R. Schober, and V. L. Gurevich, Vibrational instability, two-level systems, and the boson peak in glasses, Phys. Rev. B 76(6), 064206 (2007)
CrossRef ADS Google scholar
[33]
L. Wang and N. Xu, Probing the glass transition from structural and vibrational properties of zerotemperature glasses, Phys. Rev. Lett. 112(5), 055701 (2014)
CrossRef ADS Google scholar
[34]
S. Singh, M. D. Ediger, and J. J. de Pablo, Ultrastable glasses from in silico vapour deposition, Nat. Mater. 12(2), 139 (2013)
CrossRef ADS Google scholar
[35]
S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Origin of the boson peak in systems with lattice disorder, Phys. Rev. Lett. 86(7), 1255 (2001)
CrossRef ADS Google scholar
[36]
A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parliński, P. Jochym, and P. Piekarz, Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals, Phys. Rev. Lett. 106(22), 225501 (2011)
CrossRef ADS Google scholar
[37]
H. Tong, P. Tan, and N. Xu, From crystals to disordered crystals: A hidden order-disorder transition, Sci. Rep. 5, 15378 (2015)
CrossRef ADS Google scholar
[38]
A. J. Liu and S. R. Nagel, Nonlinear dynamics: Jamming is not just cool any more, Nature 396(6706), 21 (1998)
CrossRef ADS Google scholar
[39]
A. J. Liu and S. R. Nagel, The jamming transition and the marginally jammed solid, Annu. Rev. Condens. Matter Phys. 1(1), 347 (2010)
CrossRef ADS Google scholar
[40]
M. van Hecke, Jamming of soft particles: Geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter 22(3), 033101 (2010)
CrossRef ADS Google scholar
[41]
N. Xu, Mechanical, vibrational, and dynamical properties of amorphous systems near jamming, Front. Phys. 6(1), 109 (2011)
CrossRef ADS Google scholar
[42]
C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68(1), 011306 (2003)
CrossRef ADS Google scholar
[43]
S. Torquato and F. H. Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Rev. Mod. Phys. 82(3), 2633 (2010)
CrossRef ADS Google scholar
[44]
G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys. 82(1), 789 (2010)
CrossRef ADS Google scholar
[45]
M. Müller and M. Wyart, Marginal stability in structural, spin, and electron glasses, Annu. Rev. Condens. Matter Phys. 6(1), 177 (2015)
CrossRef ADS Google scholar
[46]
M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Effects of compression on the vibrational modes of marginally jammed solids, Phys. Rev. E 72(5), 051306 (2005)
CrossRef ADS Google scholar
[47]
M. Wyart, S. R. Nagel, and T. A. Witten, Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids, Europhys. Lett. 72(3), 486 (2005)
CrossRef ADS Google scholar
[48]
H. Tong and N. Xu, Order parameter for structural heterogeneity in disordered solids, Phys. Rev. E 90, 010401(R) (2014)
[49]
https://cmor.rice.edu/
[50]
X. Wang, W. Zheng, L. Wang, and N. Xu, Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses, Phys. Rev. Lett. 114(3), 035502 (2015)
CrossRef ADS Google scholar
[51]
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Amsterdam: Elsevier, 1986
[52]
J. Liu, Y. Nie, and N. Xu (in preparation)
[53]
E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, Structural relaxation made simple, Phys. Rev. Lett. 97(17), 170201 (2006)
CrossRef ADS Google scholar
[54]
E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Identifying structural flow defects in disordered solids using machine-learning methods, Phys. Rev. Lett. 114(10), 108001 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(826 KB)

Accesses

Citations

Detail

Sections
Recommended

/