Second quantization of a covariant relativistic spacetime string in Steuckelberg–Horwitz–Piron theory
Michael Suleymanov, Lawrence Horwitz, Asher Yahalom
Second quantization of a covariant relativistic spacetime string in Steuckelberg–Horwitz–Piron theory
A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.
second quantization / spacetime string / Steuckelberg–Horwitz–Piron theory
[1] |
E. C. G.Stueckelberg, Remarque a propos de la creation de paires de particules en theorie de relativite, Helv. Phys. Acta14, 588 (1941)
|
[2] |
L.Horwitz and C.Piron, Relativistic dynamics, Helv. Phys. Acta46, 316 (1973)
|
[3] |
L. P.Horwitz, Relativistic Quantum Mechanics, Dordrecht: Springer, 2015
CrossRef
ADS
Google scholar
|
[4] |
R.Arshansky and L.Horwitz, The quantum relativistic two-body bound state (I): The spectrum, J. Math. Phys.30(1), 66 (1989)
CrossRef
ADS
Google scholar
|
[5] |
T. D.Newton and E. P.Wigner, Localized states for elementary systems, Rev. Mod. Phys.21(3), 400 (1949)
CrossRef
ADS
Google scholar
|
[6] |
J.Zmuidzinas, Unitary representations of the Lorentz group on 4-vector manifolds, J. Math. Phys.7(4), 764 (1966)
CrossRef
ADS
Google scholar
|
[7] |
L. P.Horwitz, W. C.Schieve, and C.Piron, Gibbs ensembles in relativistic classical and quantum mechanics, Ann. Phys.137(2), 306 (1981)
CrossRef
ADS
Google scholar
|
[8] |
J.Cook, Solutions of the relativistic two-body problem (2): Quantum mechanics, Aust. J. Phys.25(2), 141 (1972)
CrossRef
ADS
Google scholar
|
[9] |
H.Leutwyler and J.Stern, Harmonic confinement: A fully relativistic approximation to the meson spectrum, Phys. Lett. B73(1), 75 (1978)
CrossRef
ADS
Google scholar
|
[10] |
Y. S.Kim and M. E.Noz, Relativistic harmonic oscillators and hadronic structures in the quantum-mechanics curriculum, Am. J. Phys. 46(5), 484 (1978)
CrossRef
ADS
Google scholar
|
[11] |
J.Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String, Cambridge: Cambridge University Press, 1998
|
[12] |
H.Haber and H. A.Weldon, Thermodynamics of an ultrarelativistic ideal Bose gas, Phys. Rev. Lett. 46(23), 1497 (1981)
CrossRef
ADS
Google scholar
|
[13] |
F.Lindner, M. G.Schätzel, H.Walther, A.Baltuška, E.Goulielmakis, F.Krausz, D. B.Milošević, D.Bauer, W.Becker, and G. G.Paulus, Attosecond double-slit experiment, Phys. Rev. Lett. 95(4), 040401 (2005)
CrossRef
ADS
Google scholar
|
[14] |
I.Aharonovich and L.Horwitz, Radiation-reaction in classical off-shell electrodynamics (I): The above massshell case, J. Math. Phys.53(3), 032902 (2012)
CrossRef
ADS
Google scholar
|
[15] |
L.Burakovsky, L.Horwitz, and W.Schieve, A new relativistic high temperature Bose–Einstein condensation, Phys. Rev. D54(6), 4029 (1996)
CrossRef
ADS
Google scholar
|
[16] |
L. P. H. J.Frastai and L. P.Horwitz, Off-shell fields and Pauli–Villars regularization, Found. Phys. 25(10), 1495 (1995)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |