Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

Yunfeng Hua, Zhenyu Deng, Yangwei Jiang, Linxi Zhang

PDF(5317 KB)
PDF(5317 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128701. DOI: 10.1007/s11467-017-0665-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression

Author information +
History +

Abstract

Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.

Keywords

molecular dynamics simulation / semiflexible ring polymer brushes / nanoparticle / compression / ordered structure

Cite this article

Download citation ▾
Yunfeng Hua, Zhenyu Deng, Yangwei Jiang, Linxi Zhang. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression. Front. Phys., 2017, 12(3): 128701 https://doi.org/10.1007/s11467-017-0665-y

References

[1]
M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, and B. V. R. Chowdari, α-Fe2O3 nanoflakes as an anode material for Li-ion batteries, Adv. Funct. Mater. 17(7), 2792 (2006)
[2]
T. Yu, Y. W. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C.T. Lim, J. T. L. Thong, and C. H. Sow, Controlled growth and field-emission properties of cobalt oxide nanowalls, Adv. Mater. 17(13), 1595 (2005)
CrossRef ADS Google scholar
[3]
X. D. Gao, X. M. Li, W. D. Yu, F. Peng, and C. Y. Zhang, Oversized hexagonal nanosheets of layered zinc hydroxysulfates via the hexamethylenetetraminemediated solution route, Mater. Res. Bull. 41(3), 608 (2006)
CrossRef ADS Google scholar
[4]
X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat. Nanotechnol. 6(1), 28 (2011)
CrossRef ADS Google scholar
[5]
H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, NiOH2 nanoplates grown on graphene as advanced electrochemical pseudocapacitormaterials, J. Am. Chem. Soc. 132(21), 7472 (2010)
CrossRef ADS Google scholar
[6]
S. H. Chen and D. L. Carroll, Silver nanoplates: Size control in two dimensions and formation mechanisms, J. Phys. Chem. B 108(18), 5500 (2004)
CrossRef ADS Google scholar
[7]
X. P. Sun, S. J. Dong, and E. Wang, Large-scale synthesis of micrometer- scale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angew. Chem. Int. Ed. 43(46), 6360 (2004)
CrossRef ADS Google scholar
[8]
A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
CrossRef ADS Google scholar
[9]
M. Q. Yang, N. Zhang, M. Pagliaro, and Y. J. Xu, Artificial photosynthesis over graphene-semiconductor composites: Are we getting better? Chem. Soc. Rev. 43(24), 8240 (2014)
CrossRef ADS Google scholar
[10]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, , Challenges and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[11]
J. Yu, Y. Yu, P. Zhou, W. Xiao, and B. Cheng, Morphology dependent photocatalytic H2-production Activity of CdS, Appl. Catal. B 184(2), 156 (2014)
CrossRef ADS Google scholar
[12]
F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, and S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem. 21(39), 15171 (2011)
CrossRef ADS Google scholar
[13]
J. Hong, Y. Wang, Y. Wang, W. Zhang, and R. Xu, Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water, ChemSusChem 6(12), 2263 (2013)
CrossRef ADS Google scholar
[14]
X. Song, J. Hu, and H. Zeng, Two-dimensional semiconductors: Recent progress and future perspectives, J. Mater. Chem. 1, 2952 (2013)
CrossRef ADS Google scholar
[15]
S. Khanchandani, S. Kundu, A. Patra, and A. K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods, J. Phys. Chem. C 116(44), 23653 (2012)
CrossRef ADS Google scholar
[16]
Y. Xu, W. Zhao, R. Xu, Y. Shi, and B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visiblelight- driven water splitting photocatalysts for hydrogen evolution, Chem. Commun. 49(84), 9803 (2013)
CrossRef ADS Google scholar
[17]
Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, J. Phys. Chem. C 118(24), 12727 (2014)
CrossRef ADS Google scholar
[18]
I. Y. Kim, Y. K. Jo, J. M. Lee, L. Wang, and S. J. Hwang, Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites, J. Phys. Chem. Lett. 5(23), 4149 (2014)
CrossRef ADS Google scholar
[19]
T. Sagawa, S. Yoshikawa, and H. Imahori, Onedimensional nanostructured semiconducting materials for organic photovoltaics, J. Phys. Chem. Lett. 1(7), 1020 (2010)
CrossRef ADS Google scholar
[20]
L. Yuan, M. Q. Yang, and Y. J. Xu, Tuning the surface charge of graphene for self-Assembly synthesis of a SnNb2O6 nanosheet-graphene (2D-2D) nanocomposite with enhanced visible light photoactivity, Nanoscale 6(12), 6335 (2014)
CrossRef ADS Google scholar
[21]
S. Milner, Polymer brushes, Science 251(4996), 905 (1991)
CrossRef ADS Google scholar
[22]
A. Halperin, M. Tirrell, and T. P. Lodge, Tethered chains in polymer microstructures, Adv. Polym. Sci. 100, 31 (1992)
CrossRef ADS Google scholar
[23]
G. S. Grest, Normal and shear forces between polymer brushes, Adv. Polym. Sci. 138, 149 (1999)
CrossRef ADS Google scholar
[24]
R. C. Advincula, W. J. Brittain, K. C. Caster, and J. Rühe, Polymer Brushes, Weinheim: Wiley VCH, pp 427–440 (2004)
CrossRef ADS Google scholar
[25]
G. S. Grest and K. Kremer, Molecular dynamics simulation for polymers in the presence of a heat bath, Phys. Rev. A 33(5), 3628 (1986)
CrossRef ADS Google scholar
[26]
A. Brasiello, S. Crescitelli, and G. Milano, Development of a coarse-grained model for simulations of tridecanoin liquid-solid phase transitions, Phys. Chem. Chem. Phys. 13(37), 16618 (2011)
CrossRef ADS Google scholar
[27]
T. Carlsson, N. Kamerlin, G. A. Arteca, and C. Elvingson, Brownian dynamics of a compressed polymer brush model: Off-equilibrium response as a function of surface coverage and compression rate, Phys. Chem. Chem. Phys. 13(35), 16084 (2011)
CrossRef ADS Google scholar
[28]
I. G. Elliott, T. L. Kuhl, and R. Faller, Molecular simulation study of the structure of high density polymer brushes in good solvent, Macromolecules 43(21), 9131 (2010)
CrossRef ADS Google scholar
[29]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
CrossRef ADS Google scholar
[30]
W. Humphrey, A. Dalke, and K. Schulten, VMD – Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)
CrossRef ADS Google scholar
[31]
Y. F. Hua, L. X. Zhang, and L. Zhang, Compressiondriven migration of nanoparticles in semiflexible polymer brushes, Polymer 83(9), 67 (2016)
CrossRef ADS Google scholar
[32]
A. Milchev and K. Binder, Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression, Soft Matter 10(21), 3783 (2014)
CrossRef ADS Google scholar
[33]
G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comput. Phys. 23(2), 187 (1977)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(5317 KB)

Accesses

Citations

Detail

Sections
Recommended

/