New approaches in agent-based modeling of complex financial systems
Ting-Ting Chen, Bo Zheng, Yan Li, Xiong-Fei Jiang
New approaches in agent-based modeling of complex financial systems
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents’ behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
econophysics / complex systems
[1] |
F. Black, Studies of stock price volatility changes, Alexandria, 1976. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section, pp 177–181
|
[2] |
R. N. Mantegna and H. E. Stanley, Scaling behavior in the dynamics of an economic index, Nature 376(6535), 46 (1995)
CrossRef
ADS
Google scholar
|
[3] |
P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60(5), 5305 (1999)
CrossRef
ADS
Google scholar
|
[4] |
Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng, and H. E. Stanley, Statistical properties of the volatility of price fluctuation, Phys. Rev. E 60(2), 1390 (1999)
CrossRef
ADS
Google scholar
|
[5] |
X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423(6937), 267 (2003)
CrossRef
ADS
Google scholar
|
[6] |
T. Qiu, B. Zheng, F. Ren, and S. Trimper, Returnvolatility correlation in financial dynamics, Phys. Rev. E 73(6), 065103 (2006)
CrossRef
ADS
Google scholar
|
[7] |
X. F. Jiang, T. T. Chen, and B. Zheng, Structure of local interactions in complex financial dynamics, Sci. Rep. 4, 5321 (2014)
CrossRef
ADS
Google scholar
|
[8] |
B. Zheng, X. F. Jiang, and P. Y. Ni, A mini-review on econophysics: Comparative study of Chinese and western financial markets, Chin. Phys. B 23(7), 078903 (2014)
CrossRef
ADS
Google scholar
|
[9] |
L. Tan, B. Zheng, J. J. Chen, and X. F. Jiang, How volatilities nonlocal in time affect the price dynamics in complex financial systems, PLoS One 10(2), e118399 (2015)
CrossRef
ADS
Google scholar
|
[10] |
T. Preis, J. J. Schneider, and H. E. Stanley, Switching processes in financial markets, Proc. Natl. Acad. Sci. USA 108(19), 7674 (2011)
CrossRef
ADS
Google scholar
|
[11] |
B. Podobnik, A. Valentinčič, D. Horvatič, and H. E. Stanley, Asymmetric Lévy flight in financial ratios, Proc. Natl. Acad. Sci. USA 108(44), 17883 (2011)
CrossRef
ADS
Google scholar
|
[12] |
W. Li, F. Z. Wang, S. Havlin, and H. E. Stanley, Financial factor influence on scaling and memory of trading volume in stock market, Phys. Rev. E 84(4), 046112 (2011)
CrossRef
ADS
Google scholar
|
[13] |
M. Tumminello, F. Lillo, J. Piilo, and R. N. Mantegna, Identification of clusters of investors from their real trading activity in a financial market, New J. Phys. 14(1), 013041 (2012)
CrossRef
ADS
Google scholar
|
[14] |
M. C. Münnix, T. Shimada, R. Schäfer, F. Leyvraz, T. H. Seligman, T. Guhr, and H. E. Stanley, Identifying states of a financial market, Sci. Rep. 2, 644 (2012)
CrossRef
ADS
Google scholar
|
[15] |
X. F. Jiang and B. Zheng, Anti-correlation and subsector structure in financial systems, Europhys. Lett. 97(4), 48006 (2012)
CrossRef
ADS
Google scholar
|
[16] |
X. F. Jiang, T. T. Chen, and B. Zheng, Time-reversal asymmetry in financial systems, Physica A 392(21), 5369 (2013)
CrossRef
ADS
Google scholar
|
[17] |
Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations, Phys. Rev. Lett. 112(9), 098703 (2014)
CrossRef
ADS
Google scholar
|
[18] |
A. Shleifer, Inefficient markets: An introduction to behavioral finance, J. Inst. & Theor. Econ. 158(2), 369 (2002)
CrossRef
ADS
Google scholar
|
[19] |
H. Jo and D. M. Kim, Recent development of behavioral finance, Int. J. Bus. Res. 8(2), 89 (2008)
|
[20] |
L. Feng, B. Li, B. Podobnik, T. Preis, and H. E. Stanley, Linking agent-based models and stochastic models of financial markets, Proc. Natl. Acad. Sci. USA 09(22), 8388 (2012)
CrossRef
ADS
Google scholar
|
[21] |
J. J. Chen, B. Zheng, and L. Tan, Agent-based model with asymmetric trading and herding for complex financial systems, PLoS One 8(11), 79531 (2013)
CrossRef
ADS
Google scholar
|
[22] |
V. Gontis and A. Kononovicius, Consentaneous agent based and stochastic model of the financial markets, PLoS One 9(7), 102201 (2014)
CrossRef
ADS
Google scholar
|
[23] |
Y. Shapira, Y. Berman, and E. B. Jacob, Modelling the short term herding behaviour of stock markets, New J. Phys. 16(5), 53040 (2014)
CrossRef
ADS
Google scholar
|
[24] |
J. J. Chen, B. Zheng, and L. Tan, Agent-based model with multi-level herding for complex financial systems, Sci. Rep. 5, 8399 (2015)
CrossRef
ADS
Google scholar
|
[25] |
T. Kaizoji, M. Leiss, A. Saichev, and D. Sornette, Superexponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders, J. Econ. Behav. Organ. 112, 289 (2015)
CrossRef
ADS
Google scholar
|
[26] |
R. Savona, M. Soumare, and J. V. Andersen, Financial symmetry and moods in the market, PLoS One 10(4), 0118224 (2015)
CrossRef
ADS
Google scholar
|
[27] |
E. Samanidou, E. Zschischang, D. Stauffer, and T. Lux, Agent-based models of financial markets, Rep. Prog. Phys. 70(3), 409 (2007)
CrossRef
ADS
Google scholar
|
[28] |
R. N. Mantegna and J. Kertész, Focus on statistical physics modeling in economics and finance, New J. Phys. 13(2), 25011 (2011)
CrossRef
ADS
Google scholar
|
[29] |
A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel, Econophysics review (II): Agent-based models, Quant. Finance 11(7), 1013 (2011)
CrossRef
ADS
Google scholar
|
[30] |
D. Sornette, Physics and financial economics (1776– 2014): Puzzles, Ising and agent-based models, Rep. Prog. Phys. 77(6), 62001 (2014)
CrossRef
ADS
Google scholar
|
[31] |
T. Preis, H. S. Moat, H. E. Stanley, and S. R. Bishop, Quantifying the advantage of looking forward, Sci. Rep. 2, 350 (2012)
CrossRef
ADS
Google scholar
|
[32] |
I. Bordino, S. Battiston, G. Caldarelli, M. Cristelli, A. Ukkonen, and I. Weber, Web search queries can predict stock market volumes, PLoS One 7(7), 40014 (2012)
CrossRef
ADS
Google scholar
|
[33] |
T. Preis, H. S. Moat, and H. E. Stanley, Quantifying trading behavior in financial markets using google trends, Sci. Rep. 3, 1684 (2013)
CrossRef
ADS
Google scholar
|
[34] |
H. S. Moat, C. Curme, A. Avakian, D. Y. Kenett, H. E. Stanley, and T. Preis, Quantifying wikipedia usage patterns before stock market moves, Sci. Rep. 3, 1801 (2013)
CrossRef
ADS
Google scholar
|
[35] |
R. Hisano, D. Sornette, T. Mizuno, T. Ohnishi, and T. Watanabe, High quality topic extraction from business news explains abnormal financial market volatility, PLoS One 8(6), 64846 (2013)
CrossRef
ADS
Google scholar
|
[36] |
L. Kristoufek, Can google trends search queries contribute to risk diversification, Sci. Rep. 3, 2713 (2013)
CrossRef
ADS
Google scholar
|
[37] |
T. Noguchi, N. Stewart, C. Y. Olivola, H. S. Moat, and T. Preis, Characterizing the time-perspective of nations with search engine query data, PLoS One 9(4), e95209 (2014)
CrossRef
ADS
Google scholar
|
[38] |
C. Curme, T. Preis, H. E. Stanley, and H. S. Moat, Quantifying the semantics of search behavior before stock market moves, Proc. Natl. Acad. Sci. USA 111(32), 11600 (2014)
CrossRef
ADS
Google scholar
|
[39] |
F. Lillo, S. Micciche, M. Tumminello, J. Piilo, and R. N. Mantegna, How news affects the trading behaviour of different categories of the investors in a financial market, Quant. Finance 15(2), 213 (2015)
CrossRef
ADS
Google scholar
|
[40] |
I. Giardina, J. P. Bouchaud, and M. Mézard, Microscopic models for long ranged volatility correlations, Physica A 299(1–2), 28 (2001)
CrossRef
ADS
Google scholar
|
[41] |
E. Bonabeau, Agent-based modeling: methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA 99(Suppl. 3), 7280 (2002)
CrossRef
ADS
Google scholar
|
[42] |
T. P. Evans and H. Kelley, Multi-scale analysis of a household level agent-based model of landcover change, J. Environ. Manage. 72(1–2), 57 (2004)
CrossRef
ADS
Google scholar
|
[43] |
F. Ren, B. Zheng, T. Qiu, and S. Trimper, Minority games with score-dependent and agent-dependent payoffs, Phys. Rev. E 74(4), 041111 (2006)
CrossRef
ADS
Google scholar
|
[44] |
J. D. Farmer and D. Foley, The economy needs agent based modelling, Nature 460(7256), 685 (2009)
CrossRef
ADS
Google scholar
|
[45] |
F. Schweitzer, G. Fagiolo, D. Sornette, F. V. Redondo, A. Vespignani, and D. R. White, Economic networks: The new challenges, Science 325, 422 (2009)
|
[46] |
S. Mike and J. D. Farmer, An empirical behavioral model of liquidity and volatility, J. Econo. Dyn. Contr. 32(1), 200 (2008)
CrossRef
ADS
Google scholar
|
[47] |
G. F. Gu and W. X. Zhou, On the probability distribution of stock returns in the mike-farmer model, Eur. Phys. J. B 67(4), 585 (2009)
CrossRef
ADS
Google scholar
|
[48] |
G. F. Gu and W. X. Zhou, Emergence of long memory in stock volatility from a modified mike-farmer model, Europhys. Lett. 86, 48002 (2009)
CrossRef
ADS
Google scholar
|
[49] |
H. Meng, F. Ren, G. F. Gu, X. Xiong, Y. J.Zhang, W. X. Zhou, and W. Zhang, Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations, Europhys. Lett. 98(3), 38003 (2012)
CrossRef
ADS
Google scholar
|
[50] |
J. Zhou, G. F. Gu, Z. Q. Jiang, X. Xiong, W. Chen, W. Zhang, and W. X. Zhou, Computational experiments successfully predict the emergence of autocorrelations in ultrahigh-frequency stock returns, Comput. Econ. (2016) (in press)
CrossRef
ADS
Google scholar
|
[51] |
T. T. Chen, B. Zheng, and Y. Li, Information driving forces and agent-based modelling (submitted)
|
[52] |
L. Menkhoff, The use of technical analysis by fund managers: International evidence, J. Bank. Finance 34(11), 2573 (2010)
CrossRef
ADS
Google scholar
|
[53] |
V. M. Eguíluz and M. G. Zimmermann, Transmission of information and herd behavior: An application to financial markets, Phys. Rev. Lett. 85(26), 5659 (2000)
CrossRef
ADS
Google scholar
|
[54] |
D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-Gershgoren, and E. Ben-Jacob, Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002, PLoS One 6(4), e19378 (2011)
CrossRef
ADS
Google scholar
|
[55] |
J. Shen and B. Zheng, On return-volatility correlation in financial dynamics, Europhys. Lett. 88(2), 28003 (2009)
CrossRef
ADS
Google scholar
|
[56] |
B. J. Park, Asymmetric herding as a source of asymmetric return volatility, J. Bank. Finance 35(10), 2657 (2011)
CrossRef
ADS
Google scholar
|
[57] |
K. A. Kim and J. R. Nofsinger, Institutional herding, business groups, and economic regimes: Evidence from Japan, J. Bus. 78(1), 213 (2005)
CrossRef
ADS
Google scholar
|
[58] |
A. Walter and F. M. Weber, Herding in the German mutual fund industry, Eur. Financ. Manag. 12(3), 375 (2006)
CrossRef
ADS
Google scholar
|
[59] |
R. Cont and J. P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroecon. Dyn. 4(02), 170 (2000)
CrossRef
ADS
Google scholar
|
[60] |
N. Blasco, P. Corredor, and S. Ferreruela, Does herding affect volatility? Implications for the Spanish stock market, Quant. Finance 12(2), 311 (2012)
CrossRef
ADS
Google scholar
|
[61] |
J. P. Bouchaud, A. Matacz, and M. Potters, Leverage effect in financial markets: The retarded volatility model, Phys. Rev. Lett. 87(22), 228701 (2001)
CrossRef
ADS
Google scholar
|
[62] |
Y. H. Shao, G. F. Gu, Z. Q. Jiang, W. X. Zhou, and D. Sornette, Comparing the performance of fa, dfa and dma using different synthetic long-range correlated time series, Sci. Rep. 2, 5225 (2012)
CrossRef
ADS
Google scholar
|
[63] |
P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley, Inverse cubic law for the distribution of stock price variations, Eur. Phys. J. B 3(2), 139 (1998)
CrossRef
ADS
Google scholar
|
[64] |
G. F. Gu, W. Chen, and W. X. Zhou, Empirical distributions of Chinese stock returns at different microscopic timescales, Physica A 387(2–3), 495 (2008)
CrossRef
ADS
Google scholar
|
[65] |
V. Plerou, P. Gopikrishnan, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E 60(6), 6519 (1999)
CrossRef
ADS
Google scholar
|
[66] |
G. H. Mu and W. X. Zhou, Tests of nonuniversality of the stock return distributions in an emerging market, Phys. Rev. E 82(6), 066103 (2010)
CrossRef
ADS
Google scholar
|
[67] |
V. Plerou, P. Gopikrishnan, and H. E. Stanley, Twophase behaviour of financial markets, Nature 421(6919), 130 (2003)
CrossRef
ADS
Google scholar
|
[68] |
V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley, Quantifying stock-price response to demand fluctuations, Phys. Rev. E 66, 027104 (2002)
CrossRef
ADS
Google scholar
|
[69] |
A. Utsugi, K. Ino, and M. Oshikawa, Random matrix theory analysis of cross correlations in financial markets, Phys. Rev. E 70, 026110 (2004)
CrossRef
ADS
Google scholar
|
[70] |
R. K. Pan and S. Sinha, Self-organization of price fluctuation distribution in evolving markets, Europhys. Lett. 77(5), 58004 (2007)
CrossRef
ADS
Google scholar
|
[71] |
J. Shen and B. Zheng, Cross-correlation in financial dynamics, Europhys. Lett. 86(4), 48005 (2009)
CrossRef
ADS
Google scholar
|
[72] |
B. Podobnik, D. Wang, D. Horvatic, I. Grosse, and H. E. Stanley, Time-lag cross-correlations in collective phenomena, Europhys. Lett. 90(6), 68001 (2010)
CrossRef
ADS
Google scholar
|
[73] |
L. Corazzini and B. Greiner, Herding, social preferences and (non-)conformity, Econ. Lett. 97(1), 74 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |