Double-temperature ratchet model and current reversal of coupled Brownian motors
Chen-Pu Li, Hong-Bin Chen, Zhi-Gang Zheng
Double-temperature ratchet model and current reversal of coupled Brownian motors
On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed ransport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.
coupled Brownian motors / ratchet model / effective potential / noise
[1] |
P. Reimann and M. Evstigneev, Pulsating potential ratchet, Europhys. Lett. 78(5), 50004 (2007)
CrossRef
ADS
Google scholar
|
[2] |
F. Marchesoni, Transport properties in disordered ratchet potentials, Phys. Rev. E 56(3), 2492 (1997)
CrossRef
ADS
Google scholar
|
[3] |
J. D. Bao and Y. Z. Zhuo, Biasing fluctuation model for directional stepping motion of molecular motor, Chin. Sci. Bull. 43(22), 1879 (1998)
CrossRef
ADS
Google scholar
|
[4] |
P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
CrossRef
ADS
Google scholar
|
[5] |
O. M. Braun, R. Ferrando, and G. E. Tommei, Stimulated diffusion of an adsorbed dimer, Phys. Rev. E 68(5), 051101 (2003)
CrossRef
ADS
Google scholar
|
[6] |
S. Gonçalves, C. Fusco, A. R. Bishop, and V. M. Kenkre, Bistability and hysteresis in the sliding friction of a dimer, Phys. Rev. B 72(19), 195418 (2005)
CrossRef
ADS
Google scholar
|
[7] |
E. Heinsalu, M. Patriarca, and F. Marchesoni, Dimer diffusion in a washboard potential, Phys. Rev. E 77(2), 021129 (2008)
CrossRef
ADS
Google scholar
|
[8] |
A. E. Filippov, J. Klafter, and M. Urbakh, Friction through dynamical formation and rupture of molecular bonds, Phys. Rev. Lett. 92(13), 135503 (2004)
CrossRef
ADS
Google scholar
|
[9] |
S. Maier, Y. Sang, T. Filleter, M. Grant, R. Bennewitz, E. Gnecco, and E. Meyer, Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B 72(24), 245418 (2005)
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Wang and J. D. Bao, Transport coherence in coupled Brownian ratchet, Physica A 374(1), 33 (2007)
CrossRef
ADS
Google scholar
|
[11] |
J. L. Mateos, A random walker on a ratchet, Physica A 351(1), 79 (2005)
CrossRef
ADS
Google scholar
|
[12] |
S. E. Mangioni and H. S. Wio, A random walker on a ratchet potential: Effect of a non Gaussian noise, Eur. Phys. J. B 61(1), 67 (2008)
CrossRef
ADS
Google scholar
|
[13] |
E. M. Craig, M. J. Zuckermann, and H. Linke, Mechanical coupling in flashing ratchets, Phys. Rev. E 73(5), 051106 (2006)
CrossRef
ADS
Google scholar
|
[14] |
J. Menche and L. Schimansky-Geier, Two particles with bistable coupling on a ratchet, Phys. Lett. A 359(2), 90 (2006)
CrossRef
ADS
Google scholar
|
[15] |
M. Evstigneev, S. von Gehlen, and P. Reimann, Interaction-controlled Brownian motion in a tilted periodic potential, Phys. Rev. E 79(1), 011116 (2009)
CrossRef
ADS
Google scholar
|
[16] |
C. Lutz, M. Reichert, H. Stark, and C. Bechinger, Surmounting barriers: The benefit of hydrodynamic interactions, Europhys. Lett. 74(4), 719 (2006)
CrossRef
ADS
Google scholar
|
[17] |
T. F. Gao, B. Q. Ai, Z. G. Zheng, and J. C. Chen, The enhancement of current and efficiency in feedback coupled Brownian ratchets, J. Stat. Mech. 2016(9), 093204 (2016)
CrossRef
ADS
Google scholar
|
[18] |
H. Y. Wang and J. D. Bao, Kramers-type elastic ratchet model for ATP gating during kinesin’s mechanochemical cycle, Physica A 389(3), 433 (2010)
CrossRef
ADS
Google scholar
|
[19] |
Z. G. Zheng and Z. Hong-Qing, New soliton-like solutions for (2+1)-dimensional breaking soliton equation, Commum. Theor. Phys. 43(3), 401 (2005)
CrossRef
ADS
Google scholar
|
[20] |
B. O. Yan, R. M. Miura, and Y. D. Chen, Direction reversal of fluctuation-induced biased Brownian motion on distorted ratchets, J. Theor. Biol. 210(2), 141 (2001)
CrossRef
ADS
Google scholar
|
[21] |
A. Pototsky, N. B. Janson, F. Marchesoni, and S. Savelev, Dipole rectification in an oscillating electric field, Europhys. Lett. 88(3), 30003 (2009)
CrossRef
ADS
Google scholar
|
[22] |
Z. G. Zheng, G. Hu, and B. Hu, Collective directional transport in coupled nonlinear oscillators without external bias, Phys. Rev. Lett. 86(11), 2273 (2001)
CrossRef
ADS
Google scholar
|
[23] |
S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)
CrossRef
ADS
Google scholar
|
[24] |
H. Y. Wang and J. D. Bao, The roles of ratchet in transport of two coupled particles, Physica A 337(1–2), 13 (2004)
CrossRef
ADS
Google scholar
|
[25] |
Z. G. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89, 154102 (2002)
CrossRef
ADS
Google scholar
|
[26] |
Z. G. Zheng and H. B. Chen, Cooperative twodimensional directed transport, Europhys. Lett. 92(3), 30004 (2010)
CrossRef
ADS
Google scholar
|
[27] |
S. von Gehlen, M. Evstigneev, and P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom, Phys. Rev. E 77(3), 031136 (2008)
CrossRef
ADS
Google scholar
|
[28] |
A. D. Rogat and K. G. Miler, A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis, J. Cell Sci. 115(24), 4855 (2002)
CrossRef
ADS
Google scholar
|
[29] |
H. Park, A. Li, L. Q. Chen, A. Houdusse, P. R. Selvin, and H. L. Sweeney, The unique insert at the end of the myosin VI motor is the sole determinant of directionality, Proc. Natl. Acad. Sci. USA 104(3), 778 (2007)
CrossRef
ADS
Google scholar
|
[30] |
E. M. De La Cruz, E. M. Ostap, and H. L. Sweeney, Kinetic mechanism and regulation of myosin VI, J. Biochem. 276(34), 32373 (2001)
CrossRef
ADS
Google scholar
|
[31] |
S. Nishikawa, K. Homma, Y. Komori, M. Iwaki, T. Wazawa, A. Hikikoshi Iwone, J. Saito, R. Ikebe, E. Katayama, T. Yanagida, and M. Ikebe, Class VI myosin moves processively along actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290(1), 311 (2002)
CrossRef
ADS
Google scholar
|
[32] |
A. Wunderlin and H. Haken, Generalized Ginzburg- Landau equations, slaving principle and center manifold theorem, Z. Phys. B Condens. Matter 44(1–2), 135 (1981)
|
[33] |
J. C. Chen and G. Z. Su, Thermodynamics and Statistical Physics (Vol. 1), Beijing: Science Press, 2010 (in Chinese)
|
[34] |
J. D. Bao, Stochastic Simulation Method of Classical and Quantum Dissipative Systems, Beijing: Science Press, 2009 (in Chinese)
|
[35] |
Z. G. Zheng, Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear System, Beijing: Higher Education Press, 2004 (in Chinese)
|
[36] |
H. B. Chen, Q. W. Wang, and Z. G. Zheng, Deterministic directed transport of inertial particles in a flashing ratchet potential, Phys. Rev. E 71(3), 031102 (2005)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |