Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

Jie Ren

PDF(3049 KB)
PDF(3049 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 120505. DOI: 10.1007/s11467-017-0658-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

Author information +
History +

Abstract

The process by which a kinesin motor couples its ATPase activity with concerted mechanical handover-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

Keywords

graph theory / molecular motor / state detection / cycle flux / motility scaling

Cite this article

Download citation ▾
Jie Ren. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis. Front. Phys., 2017, 12(6): 120505 https://doi.org/10.1007/s11467-017-0658-x

References

[1]
R. D.Vale and R. A.Milligan, The way things move: Looking under the hood of molecular motor proteins, Science288(5463), 88 (2000)
CrossRef ADS Google scholar
[2]
S. M.Block, Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping, Biophys. J. 92(9), 2986(2007)
CrossRef ADS Google scholar
[3]
A.Gennerichand R. D.Vale, Walking the walk: How kinesin and dynein coordinate their steps, Curr. Opin. Cell Biol. 21(1), 59(2009)
CrossRef ADS Google scholar
[4]
S. S.Rosenfeld, P. M.Fordyce, G. M.Jefferson, P. H.King, and S. M.Block, Stepping and Stretching: How kinesin uses internal strain to walk processively, J. Biol. Chem. 278(20), 18550(2003)
CrossRef ADS Google scholar
[5]
L. M.Klumpp, A.Hoenger, and S. P.Gilbert, Kinesin’s second step, Proc. Natl. Acad. Sci. USA101(10), 3444(2004)
CrossRef ADS Google scholar
[6]
N. R.Guydoshand S. M.Block, Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain, Proc. Natl. Acad. Sci. USA103(21), 8054(2006)
CrossRef ADS Google scholar
[7]
D. D.Hackney, Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis, Proc. Natl. Acad. Sci. USA91(15), 6865(1994)
CrossRef ADS Google scholar
[8]
Y. Z.Maand E. W.Taylor, Interacting head mechanism of microtubule-kinesin ATPase, J. Biol. Chem. 272(2), 724(1997)
CrossRef ADS Google scholar
[9]
S.Uemuraand S.Ishiwata, Loading direction regulates the affinity of ADP for kinesin, Nat. Struct. Biol. 10(4), 308(2003)
CrossRef ADS Google scholar
[10]
A. B.Asenjo,N.Krohn, and H.Sosa, Configuration of the two kinesin motor domains during ATP hydrolysis, Nat. Struct. Biol. 10(10), 836(2003)
CrossRef ADS Google scholar
[11]
A.Yildiz, M.Tomishige, R. D.Vale, and P. R.Selvin, Kinesin walks hand-over-hand, Science303(5658), 676(2004)
CrossRef ADS Google scholar
[12]
T.Mori, R. D.Vale, and M.Tomishige, How kinesin waits between steps, Nature450(7170), 750(2007)
CrossRef ADS Google scholar
[13]
A. B.Asenjoand H.Sosa, A mobile kinesin-head intermediate during the ATP-waiting state, Proc. Natl. Acad. Sci. USA106(14), 5657(2009)
CrossRef ADS Google scholar
[14]
K.Visscher, M. J.Schnitzer, and S. M.Block, Single kinesin molecules studied with a molecular force clamp, Nature400(6740), 184(1999)
CrossRef ADS Google scholar
[15]
W. R.Schief, R. H.Clark, A. H.Crevenna, and J.Howard, Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism, Proc. Natl. Acad. Sci. USA101(5), 1183(2004)
CrossRef ADS Google scholar
[16]
N. J.Carterand R. A.Cross, Mechanics of the kinesin step, Nature435(7040), 308(2005)
CrossRef ADS Google scholar
[17]
M. J.Schnitzer, K.Visscher, andS. M.Block, Force production by single kinesin motors, Nat. Cell Biol.2(10), 718(2000)
CrossRef ADS Google scholar
[18]
K. S.Thorn, J. A.Ubersax, and R. D.Vale, Engineering the processive run length of the kinesin motor, J. Cell Biol.151(5), 1093(2000)
CrossRef ADS Google scholar
[19]
J.Yajima, M. C.Alonso, R. A.Cross, and Y. Y.Toyoshima, Direct long-term observation of kinesin processivity at low load, Curr. Biol.12(4), 301(2002)
CrossRef ADS Google scholar
[20]
K.Kawaguchiand S.Ishiwata, Temperature dependence of force, velocity, and processivity of single kinesin molecules, Biochem. Biophys. Res. Commun.272(3), 895(2000)
CrossRef ADS Google scholar
[21]
I.Naraand S.Ishiwata, Processivity of kinesin motility is enhanced on increasing temperature, Biophysics2, 13(2006)
CrossRef ADS Google scholar
[22]
S.Uemura, K.Kawaguchi, J.Yajima, M.Edamatsu, Y. Y.Toyoshima, and S.Ishiwata, Kinesin-microtubule binding depends on both nucleotide state and loading direction, Proc. Natl. Acad. Sci. USA99(9), 5977(2002)
CrossRef ADS Google scholar
[23]
N. R.Guydoshand S. M.Block, Direct observation of the binding state of the kinesin head to the microtubule, Nature461(7260), 125(2009)
CrossRef ADS Google scholar
[24]
A.Yildiz, M.Tomishige, A.Gennerich, and R. D.Vale, Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell134(6), 1030(2008)
CrossRef ADS Google scholar
[25]
Q.Shaoand Y. Q.Gao, On the hand-over-hand mechanism of kinesin, Proc. Natl. Acad. Sci. USA103(21), 8072(2006)
CrossRef ADS Google scholar
[26]
W. W.Zheng, D.Fan, M.Feng, and Z. S.Wang, Loadresisting capacity of kinesin, Phys. Biol. 6(3), 036002(2009)
CrossRef ADS Google scholar
[27]
Z. S.Wang, M.Feng, W. W.Zheng, and D. G.Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J.93(10), 3363(2007)
CrossRef ADS Google scholar
[28]
C.Hyeonand J. N.Onuchic, Internal strain regulates the nucleotide binding site of the kinesin leading head, Proc. Natl. Acad. Sci. USA104(7), 2175(2007)
CrossRef ADS Google scholar
[29]
Y.Okadaand N.Hirokawa, Mechanism of the singleheaded processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, Proc. Natl. Acad. Sci. USA97(2), 640(2000)
CrossRef ADS Google scholar
[30]
S.Liepeltand R.Lipowsky,Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett.98(25), 258102(2007)
CrossRef ADS Google scholar
[31]
R. A.Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci.29(6), 301(2004) (and references therein)
CrossRef ADS Google scholar
[32]
D. G.Fan, W. W.Zheng, R.Hou, F.Li, and Z. S.Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry47(16), 4733(2008)
CrossRef ADS Google scholar
[33]
W. O.Hancockand J.Howard, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains, Proc. Natl. Acad. Sci. USA96(23), 13147(1999)
CrossRef ADS Google scholar
[34]
S. D.Auerbachand K. A.Johnson, Alternating site ATPase pathway of rat conventional kinesin, J. Biol. Chem. 280(44), 37048(2005)
CrossRef ADS Google scholar
[35]
T. L.Hill, Studies in irreversible thermodynamics (IV): Diagrammatic representation of steady-state fluxes for unimolecular systems, J. Theor. Biol. 10(3), 442(1966)
CrossRef ADS Google scholar
[36]
T. L.Hilland Y. D.Chen, Stochatics of cycle completions (fluxes) in biochemical kinetic diagram, Proc. Natl. Acad. Sci. USA72(4), 1291(1975)
CrossRef ADS Google scholar
[37]
H. H.Kohlerand E.Vollmerhaus, The frequency of cyclic processes in biological multistate systems, J. Math. Biol. 9(3), 275(1980)
CrossRef ADS Google scholar
[38]
W. T.Tutter, Graph Theory, Cambridge: Cambridge University Press, 2001
[39]
E. L.Kingand C.Altman, A schematic method of deriving the rate laws for enzyme-catalyzed reactions, J. Phys. Chem. 60(10), 1375(1956)
CrossRef ADS Google scholar
[40]
S. M.Block, C. L.Asbury, J. W.Shaevitz, and M. J.Lang, Probing the kinesin reaction cycle with a 2D optical force clamp, Proc. Natl. Acad. Sci. USA100(5), 2351(2003)
CrossRef ADS Google scholar
[41]
S.Rice, A. W.Lin, D.Safer, C. L.Hart, N.Naber, B. O.Carragher, S. M.Cain, E.Pechatnikova, E. M.Wilson-Kubalek, M.Whittaker, E.Pate, R.Cooke, E. W.Taylor, R. A.Milligan, and R. D.Vale, A structural change in the kinesin motor protein that drives motility, Nature402(6763), 778(1999)
CrossRef ADS Google scholar
[42]
W.Hua, E. C.Young, M. L.Fleming, and J.Gelles, Coupling of kinesin steps to ATP hydrolysis, Nature388(6640), 390(1997)
CrossRef ADS Google scholar
[43]
M. J.Schnitzerand S. M.Block, Kinesin hydrolyses one ATP per 8-nm step, Nature388(6640), 386(1997)
CrossRef ADS Google scholar
[44]
A.Seitz, H.Kojima, K.Oiwa, E. M.Mandelkow, Y. H.Song, and E.Mandelkow, Single-molecule investigation of the interference between kinesin, tau and MAP2c, EMBO J. 21(18), 4896(2002)
CrossRef ADS Google scholar
[45]
S.Lakämper, A.Kallipolitou, G.Woehlke, M.Schliwa, and E.Meyhofer, Single fungal kinesin motor molecules move processively along microtubules, Biophys. J. 84(3), 1833(2003)
CrossRef ADS Google scholar
[46]
R. D.Vale, T.Funatsu, D. W.Pierce, L.Romberg, Y.Harada, and T.Yanagida, Direct observation of single kinesin molecules moving along microtubules, Nature380(6573), 451(1996)
CrossRef ADS Google scholar
[47]
D. L.Coy, M.Wagenbach, and J.Howard, Kinesin takes one 8-nm step for each ATP that it hydrolyzes, J. Biol. Chem. 274(6), 3667(1999)
CrossRef ADS Google scholar
[48]
S.Courty, C.Luccardini, Y.Bellaiche, G.Cappello, and M.Dahan, Tracking individual kinesin motors in living cells using single quantum-dot imaging, Nano Lett. 6(7), 1491(2006)
CrossRef ADS Google scholar
[49]
D.Vale, Myosin V motor proteins, J. Cell Biol. 163, 445(2003)
CrossRef ADS Google scholar
[50]
J.Ren, V. Y.Chernyak, andN. A.Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech.: Theo. Exp. 05, 05011(2011)
CrossRef ADS Google scholar
[51]
J.Renand N. A.Sinitsyn, Braid group and topological phase transitions in nonequilibrium stochastic dynamics, Phys. Rev. E87(5), 050101(2013) (R)
CrossRef ADS Google scholar
[52]
R.Tarjan, Enumeration of the elementary circuits of a directed graph, SIAM J. Comput. 2(3), 211(1973)
CrossRef ADS Google scholar
[53]
L.Onsagerand S.Machlup, Fluctuations and irreversible processes, Phys. Rev. 91(6), 1505(1953)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3049 KB)

Accesses

Citations

Detail

Sections
Recommended

/