Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis
Jie Ren
Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis
The process by which a kinesin motor couples its ATPase activity with concerted mechanical handover-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.
graph theory / molecular motor / state detection / cycle flux / motility scaling
[1] |
R. D.Vale and R. A.Milligan, The way things move: Looking under the hood of molecular motor proteins, Science288(5463), 88 (2000)
CrossRef
ADS
Google scholar
|
[2] |
S. M.Block, Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping, Biophys. J. 92(9), 2986(2007)
CrossRef
ADS
Google scholar
|
[3] |
A.Gennerichand R. D.Vale, Walking the walk: How kinesin and dynein coordinate their steps, Curr. Opin. Cell Biol. 21(1), 59(2009)
CrossRef
ADS
Google scholar
|
[4] |
S. S.Rosenfeld, P. M.Fordyce, G. M.Jefferson, P. H.King, and S. M.Block, Stepping and Stretching: How kinesin uses internal strain to walk processively, J. Biol. Chem. 278(20), 18550(2003)
CrossRef
ADS
Google scholar
|
[5] |
L. M.Klumpp, A.Hoenger, and S. P.Gilbert, Kinesin’s second step, Proc. Natl. Acad. Sci. USA101(10), 3444(2004)
CrossRef
ADS
Google scholar
|
[6] |
N. R.Guydoshand S. M.Block, Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain, Proc. Natl. Acad. Sci. USA103(21), 8054(2006)
CrossRef
ADS
Google scholar
|
[7] |
D. D.Hackney, Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis, Proc. Natl. Acad. Sci. USA91(15), 6865(1994)
CrossRef
ADS
Google scholar
|
[8] |
Y. Z.Maand E. W.Taylor, Interacting head mechanism of microtubule-kinesin ATPase, J. Biol. Chem. 272(2), 724(1997)
CrossRef
ADS
Google scholar
|
[9] |
S.Uemuraand S.Ishiwata, Loading direction regulates the affinity of ADP for kinesin, Nat. Struct. Biol. 10(4), 308(2003)
CrossRef
ADS
Google scholar
|
[10] |
A. B.Asenjo,N.Krohn, and H.Sosa, Configuration of the two kinesin motor domains during ATP hydrolysis, Nat. Struct. Biol. 10(10), 836(2003)
CrossRef
ADS
Google scholar
|
[11] |
A.Yildiz, M.Tomishige, R. D.Vale, and P. R.Selvin, Kinesin walks hand-over-hand, Science303(5658), 676(2004)
CrossRef
ADS
Google scholar
|
[12] |
T.Mori, R. D.Vale, and M.Tomishige, How kinesin waits between steps, Nature450(7170), 750(2007)
CrossRef
ADS
Google scholar
|
[13] |
A. B.Asenjoand H.Sosa, A mobile kinesin-head intermediate during the ATP-waiting state, Proc. Natl. Acad. Sci. USA106(14), 5657(2009)
CrossRef
ADS
Google scholar
|
[14] |
K.Visscher, M. J.Schnitzer, and S. M.Block, Single kinesin molecules studied with a molecular force clamp, Nature400(6740), 184(1999)
CrossRef
ADS
Google scholar
|
[15] |
W. R.Schief, R. H.Clark, A. H.Crevenna, and J.Howard, Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism, Proc. Natl. Acad. Sci. USA101(5), 1183(2004)
CrossRef
ADS
Google scholar
|
[16] |
N. J.Carterand R. A.Cross, Mechanics of the kinesin step, Nature435(7040), 308(2005)
CrossRef
ADS
Google scholar
|
[17] |
M. J.Schnitzer, K.Visscher, andS. M.Block, Force production by single kinesin motors, Nat. Cell Biol.2(10), 718(2000)
CrossRef
ADS
Google scholar
|
[18] |
K. S.Thorn, J. A.Ubersax, and R. D.Vale, Engineering the processive run length of the kinesin motor, J. Cell Biol.151(5), 1093(2000)
CrossRef
ADS
Google scholar
|
[19] |
J.Yajima, M. C.Alonso, R. A.Cross, and Y. Y.Toyoshima, Direct long-term observation of kinesin processivity at low load, Curr. Biol.12(4), 301(2002)
CrossRef
ADS
Google scholar
|
[20] |
K.Kawaguchiand S.Ishiwata, Temperature dependence of force, velocity, and processivity of single kinesin molecules, Biochem. Biophys. Res. Commun.272(3), 895(2000)
CrossRef
ADS
Google scholar
|
[21] |
I.Naraand S.Ishiwata, Processivity of kinesin motility is enhanced on increasing temperature, Biophysics2, 13(2006)
CrossRef
ADS
Google scholar
|
[22] |
S.Uemura, K.Kawaguchi, J.Yajima, M.Edamatsu, Y. Y.Toyoshima, and S.Ishiwata, Kinesin-microtubule binding depends on both nucleotide state and loading direction, Proc. Natl. Acad. Sci. USA99(9), 5977(2002)
CrossRef
ADS
Google scholar
|
[23] |
N. R.Guydoshand S. M.Block, Direct observation of the binding state of the kinesin head to the microtubule, Nature461(7260), 125(2009)
CrossRef
ADS
Google scholar
|
[24] |
A.Yildiz, M.Tomishige, A.Gennerich, and R. D.Vale, Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell134(6), 1030(2008)
CrossRef
ADS
Google scholar
|
[25] |
Q.Shaoand Y. Q.Gao, On the hand-over-hand mechanism of kinesin, Proc. Natl. Acad. Sci. USA103(21), 8072(2006)
CrossRef
ADS
Google scholar
|
[26] |
W. W.Zheng, D.Fan, M.Feng, and Z. S.Wang, Loadresisting capacity of kinesin, Phys. Biol. 6(3), 036002(2009)
CrossRef
ADS
Google scholar
|
[27] |
Z. S.Wang, M.Feng, W. W.Zheng, and D. G.Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J.93(10), 3363(2007)
CrossRef
ADS
Google scholar
|
[28] |
C.Hyeonand J. N.Onuchic, Internal strain regulates the nucleotide binding site of the kinesin leading head, Proc. Natl. Acad. Sci. USA104(7), 2175(2007)
CrossRef
ADS
Google scholar
|
[29] |
Y.Okadaand N.Hirokawa, Mechanism of the singleheaded processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, Proc. Natl. Acad. Sci. USA97(2), 640(2000)
CrossRef
ADS
Google scholar
|
[30] |
S.Liepeltand R.Lipowsky,Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett.98(25), 258102(2007)
CrossRef
ADS
Google scholar
|
[31] |
R. A.Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci.29(6), 301(2004) (and references therein)
CrossRef
ADS
Google scholar
|
[32] |
D. G.Fan, W. W.Zheng, R.Hou, F.Li, and Z. S.Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry47(16), 4733(2008)
CrossRef
ADS
Google scholar
|
[33] |
W. O.Hancockand J.Howard, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains, Proc. Natl. Acad. Sci. USA96(23), 13147(1999)
CrossRef
ADS
Google scholar
|
[34] |
S. D.Auerbachand K. A.Johnson, Alternating site ATPase pathway of rat conventional kinesin, J. Biol. Chem. 280(44), 37048(2005)
CrossRef
ADS
Google scholar
|
[35] |
T. L.Hill, Studies in irreversible thermodynamics (IV): Diagrammatic representation of steady-state fluxes for unimolecular systems, J. Theor. Biol. 10(3), 442(1966)
CrossRef
ADS
Google scholar
|
[36] |
T. L.Hilland Y. D.Chen, Stochatics of cycle completions (fluxes) in biochemical kinetic diagram, Proc. Natl. Acad. Sci. USA72(4), 1291(1975)
CrossRef
ADS
Google scholar
|
[37] |
H. H.Kohlerand E.Vollmerhaus, The frequency of cyclic processes in biological multistate systems, J. Math. Biol. 9(3), 275(1980)
CrossRef
ADS
Google scholar
|
[38] |
W. T.Tutter, Graph Theory, Cambridge: Cambridge University Press, 2001
|
[39] |
E. L.Kingand C.Altman, A schematic method of deriving the rate laws for enzyme-catalyzed reactions, J. Phys. Chem. 60(10), 1375(1956)
CrossRef
ADS
Google scholar
|
[40] |
S. M.Block, C. L.Asbury, J. W.Shaevitz, and M. J.Lang, Probing the kinesin reaction cycle with a 2D optical force clamp, Proc. Natl. Acad. Sci. USA100(5), 2351(2003)
CrossRef
ADS
Google scholar
|
[41] |
S.Rice, A. W.Lin, D.Safer, C. L.Hart, N.Naber, B. O.Carragher, S. M.Cain, E.Pechatnikova, E. M.Wilson-Kubalek, M.Whittaker, E.Pate, R.Cooke, E. W.Taylor, R. A.Milligan, and R. D.Vale, A structural change in the kinesin motor protein that drives motility, Nature402(6763), 778(1999)
CrossRef
ADS
Google scholar
|
[42] |
W.Hua, E. C.Young, M. L.Fleming, and J.Gelles, Coupling of kinesin steps to ATP hydrolysis, Nature388(6640), 390(1997)
CrossRef
ADS
Google scholar
|
[43] |
M. J.Schnitzerand S. M.Block, Kinesin hydrolyses one ATP per 8-nm step, Nature388(6640), 386(1997)
CrossRef
ADS
Google scholar
|
[44] |
A.Seitz, H.Kojima, K.Oiwa, E. M.Mandelkow, Y. H.Song, and E.Mandelkow, Single-molecule investigation of the interference between kinesin, tau and MAP2c, EMBO J. 21(18), 4896(2002)
CrossRef
ADS
Google scholar
|
[45] |
S.Lakämper, A.Kallipolitou, G.Woehlke, M.Schliwa, and E.Meyhofer, Single fungal kinesin motor molecules move processively along microtubules, Biophys. J. 84(3), 1833(2003)
CrossRef
ADS
Google scholar
|
[46] |
R. D.Vale, T.Funatsu, D. W.Pierce, L.Romberg, Y.Harada, and T.Yanagida, Direct observation of single kinesin molecules moving along microtubules, Nature380(6573), 451(1996)
CrossRef
ADS
Google scholar
|
[47] |
D. L.Coy, M.Wagenbach, and J.Howard, Kinesin takes one 8-nm step for each ATP that it hydrolyzes, J. Biol. Chem. 274(6), 3667(1999)
CrossRef
ADS
Google scholar
|
[48] |
S.Courty, C.Luccardini, Y.Bellaiche, G.Cappello, and M.Dahan, Tracking individual kinesin motors in living cells using single quantum-dot imaging, Nano Lett. 6(7), 1491(2006)
CrossRef
ADS
Google scholar
|
[49] |
D.Vale, Myosin V motor proteins, J. Cell Biol. 163, 445(2003)
CrossRef
ADS
Google scholar
|
[50] |
J.Ren, V. Y.Chernyak, andN. A.Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech.: Theo. Exp. 05, 05011(2011)
CrossRef
ADS
Google scholar
|
[51] |
J.Renand N. A.Sinitsyn, Braid group and topological phase transitions in nonequilibrium stochastic dynamics, Phys. Rev. E87(5), 050101(2013) (R)
CrossRef
ADS
Google scholar
|
[52] |
R.Tarjan, Enumeration of the elementary circuits of a directed graph, SIAM J. Comput. 2(3), 211(1973)
CrossRef
ADS
Google scholar
|
[53] |
L.Onsagerand S.Machlup, Fluctuations and irreversible processes, Phys. Rev. 91(6), 1505(1953)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |