Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

Chang-Hai Tian, Xi-Yun Zhang, Zhen-Hua Wang, Zong-Hua Liu

PDF(1537 KB)
PDF(1537 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128904. DOI: 10.1007/s11467-017-0656-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

Author information +
History +

Abstract

Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

Keywords

chimera state / FitzHugh–Nagumo model / heterogeneous couplings

Cite this article

Download citation ▾
Chang-Hai Tian, Xi-Yun Zhang, Zhen-Hua Wang, Zong-Hua Liu. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys., 2017, 12(3): 128904 https://doi.org/10.1007/s11467-017-0656-z

References

[1]
Y.Kuramoto and D.Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
[2]
D. M.Abrams and S. H.Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett.93(17), 174102 (2004)
CrossRef ADS Google scholar
[3]
I.Omelchenko, O. E.Omel’chenko, P.Hövel, and E.Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett.110(22), 224101 (2013)
CrossRef ADS Google scholar
[4]
J.Hizanidis, V. G.Kanas, A.Bezerianos, and T.Bountis, Chimera states in networks of nonlocally coupled HindmarshRose neuron models, Inter. J. Bif. Chaos24(03), 1450030 (2014)
CrossRef ADS Google scholar
[5]
H.Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E73(3), 031907 (2006)
CrossRef ADS Google scholar
[6]
S.Olmi, A.Politi, and A.Torcini, Collective chaos in pulsecoupled neural networks, Europhys. Lett.92(6), 60007 (2010)
CrossRef ADS Google scholar
[7]
I.Omelchenko, Y.Maistrenko, P.Hövel, and E.Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett.106(23), 234102 (2011)
CrossRef ADS Google scholar
[8]
I.Omelchenko, B.Riemenschneider, P.Hövel, Y.Maistrenko, and E.Schöll, Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E85(2), 026212 (2012)
CrossRef ADS Google scholar
[9]
O. E.Omel’chenko, M.Wolfrum, S.Yanchuk, Y. L.Maistrenko, and O.Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E85(3), 036210 (2012)
CrossRef ADS Google scholar
[10]
M. J.Panaggio and D. M.Abrams, Chimera states on a flat torus, Phys. Rev. Lett.110(9), 094102 (2013)
CrossRef ADS Google scholar
[11]
M. J.Panaggio and D. M.Abrams, Chimera states on the surface of a sphere, Phys. Rev. E91(2), 022909 (2015)
CrossRef ADS Google scholar
[12]
J.Xie,E.Knobloch, and H. C.Kao, Twisted chimera states and multicore spiral chimera states on a twodimensional torus, Phys. Rev. E92(4), 042921 (2015)
CrossRef ADS Google scholar
[13]
Y.Maistrenko, O.Sudakov, O.Osiv, and V.Maistrenko, Chimera states in three dimensions, New J. Phys. 17(7), 073037 (2015)
CrossRef ADS Google scholar
[14]
A. M.Hagerstrom, T. E.Murphy, R.Roy, P.Hövel, I.Omelchenko, and E.Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys.8(9), 658 (2012)
[15]
M. R.Tinsley, S.Nkomo, and K.Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
[16]
E. A.Viktorov, T.Habruseva, S. P.Hegarty, G.Huyet, and B.Kelleher, Coherence and incoherence in an optical comb, Phys. Rev. Lett. 112(22), 224101 (2014)
CrossRef ADS Google scholar
[17]
N.Yao, Z. G.Huang, C.Grebogi, and Y. C.Lai, Emergence of multicluster chimera states, Sci. Rep. 5, 12988 (2015)
CrossRef ADS Google scholar
[18]
D. M.Abrams, R.Mirollo, S. H.Strogatz, and D. A.Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
CrossRef ADS Google scholar
[19]
R.Ma, J.Wang, and Z.Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
CrossRef ADS Google scholar
[20]
E. A.Martens, C. R.Laing, and S. H.Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
CrossRef ADS Google scholar
[21]
C.Gu, G.St-Yves, and J.Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
CrossRef ADS Google scholar
[22]
C. R.Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D238(16), 1569 (2009)
CrossRef ADS Google scholar
[23]
J.Xie, E.Knobloch, and H. C.Kao, Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E90(2), 022919 (2014)
CrossRef ADS Google scholar
[24]
A.Zakharova, M.Kapeller, and E.Schöll, Chimera death: Symetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)
CrossRef ADS Google scholar
[25]
P. S.Dutta and T.Banerjee, Spatial coexistence of synchronized oscillation and death: A chimeralike state, Phys. Rev. E92(4), 042919 (2015)
CrossRef ADS Google scholar
[26]
T.Banerjee, Mean-field-diffusioninduced chimera death state, Europhys. Lett. 110(6), 60003 (2015)
CrossRef ADS Google scholar
[27]
M. J.Panaggio and D. M.Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity28(3), R67 (2015)
CrossRef ADS Google scholar
[28]
N. C.Rattenborg, C. J.Amlaner, andS. L.Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
CrossRef ADS Google scholar
[29]
E. M.Cherry and F. H.Fenton, Visualization of spiral and scroll waves in simulated and experimental cardiac tissue, New J. Phys. 10(12), 125016 (2008)
CrossRef ADS Google scholar
[30]
A.Rothkegel and K.Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators, New J. Phys. 16(5), 055006 (2014)
CrossRef ADS Google scholar
[31]
W.Singer, Neuronal synchrony: A versatile code for the definition of relations? Neuron24(1), 49 (1999)
CrossRef ADS Google scholar
[32]
J. F.Hipp, A. K.Engel, and M.Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron69(2), 387 (2011)
CrossRef ADS Google scholar
[33]
P. R.Roelfsema,A.Engel, P.König, and W.Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature385(6612), 157 (1997)
CrossRef ADS Google scholar
[34]
T. P.Vogels and L. F.Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons, J. Neurosci. 25(46), 10786 (2005)
CrossRef ADS Google scholar
[35]
A.Aertsen, M.Diesmann, and M.O.Gewaltig, Stable propagation of synchronous spiking in cortical neural networks, Nature402(6761), 529 (1999)
CrossRef ADS Google scholar
[36]
T.Womelsdorf, J. M.Schoffelen, R.Oostenveld, W.Singer, R.Desimone, A. K.Engel, and P.Fries, Modulation of neuronal interactions through neuronal synchronization, Science316(5831), 1609 (2007)
CrossRef ADS Google scholar
[37]
K.Xu, W.Huang, B.Li, M.Dhamala, and Z.Liu, Controlling self-sustained spiking activity by adding or removing one network link, Europhys. Lett. 102(5), 50002 (2013)
CrossRef ADS Google scholar
[38]
Z.Liu, Organization network enhanced detection and transmission of phase-locking, Europhys. Lett.100(6), 60002 (2012)
CrossRef ADS Google scholar
[39]
J.Wang and Z.Liu, A chain model for signal detection and transmission, Europhys. Lett.102(1), 10003 (2013)
CrossRef ADS Google scholar
[40]
K.Xu, X.Zhang, C.Wang, and Z.Liu, A simplified memory network model based on pattern formations, Sci. Rep. 4, 7568 (2014)
CrossRef ADS Google scholar
[41]
J.Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA79(8), 2554 (1982)
CrossRef ADS Google scholar
[42]
P. C.Matthews, R. E.Mirollo, and S. H.Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D52(2–3), 293 (1991)
CrossRef ADS Google scholar
[43]
M. C.Cross, J. L.Rogers, R.Lifshitz, and A.Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling, Phys. Rev. E73(3), 036205 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1537 KB)

Accesses

Citations

Detail

Sections
Recommended

/