PDF
(1537KB)
Abstract
Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.
Keywords
chimera state
/
FitzHugh–Nagumo model
/
heterogeneous couplings
Cite this article
Download citation ▾
Chang-Hai Tian, Xi-Yun Zhang, Zhen-Hua Wang, Zong-Hua Liu.
Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling.
Front. Phys., 2017, 12(3): 128904 DOI:10.1007/s11467-017-0656-z
| [1] |
Y.Kuramoto and D.Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
|
| [2] |
D. M.Abrams and S. H.Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett.93(17), 174102 (2004)
|
| [3] |
I.Omelchenko, O. E.Omel’chenko, P.Hövel, and E.Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett.110(22), 224101 (2013)
|
| [4] |
J.Hizanidis, V. G.Kanas, A.Bezerianos, and T.Bountis, Chimera states in networks of nonlocally coupled HindmarshRose neuron models, Inter. J. Bif. Chaos24(03), 1450030 (2014)
|
| [5] |
H.Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E73(3), 031907 (2006)
|
| [6] |
S.Olmi, A.Politi, and A.Torcini, Collective chaos in pulsecoupled neural networks, Europhys. Lett.92(6), 60007 (2010)
|
| [7] |
I.Omelchenko, Y.Maistrenko, P.Hövel, and E.Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett.106(23), 234102 (2011)
|
| [8] |
I.Omelchenko, B.Riemenschneider, P.Hövel, Y.Maistrenko, and E.Schöll, Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E85(2), 026212 (2012)
|
| [9] |
O. E.Omel’chenko, M.Wolfrum, S.Yanchuk, Y. L.Maistrenko, and O.Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E85(3), 036210 (2012)
|
| [10] |
M. J.Panaggio and D. M.Abrams, Chimera states on a flat torus, Phys. Rev. Lett.110(9), 094102 (2013)
|
| [11] |
M. J.Panaggio and D. M.Abrams, Chimera states on the surface of a sphere, Phys. Rev. E91(2), 022909 (2015)
|
| [12] |
J.Xie,E.Knobloch, and H. C.Kao, Twisted chimera states and multicore spiral chimera states on a twodimensional torus, Phys. Rev. E92(4), 042921 (2015)
|
| [13] |
Y.Maistrenko, O.Sudakov, O.Osiv, and V.Maistrenko, Chimera states in three dimensions, New J. Phys. 17(7), 073037 (2015)
|
| [14] |
A. M.Hagerstrom, T. E.Murphy, R.Roy, P.Hövel, I.Omelchenko, and E.Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys.8(9), 658 (2012)
|
| [15] |
M. R.Tinsley, S.Nkomo, and K.Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
|
| [16] |
E. A.Viktorov, T.Habruseva, S. P.Hegarty, G.Huyet, and B.Kelleher, Coherence and incoherence in an optical comb, Phys. Rev. Lett. 112(22), 224101 (2014)
|
| [17] |
N.Yao, Z. G.Huang, C.Grebogi, and Y. C.Lai, Emergence of multicluster chimera states, Sci. Rep. 5, 12988 (2015)
|
| [18] |
D. M.Abrams, R.Mirollo, S. H.Strogatz, and D. A.Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
|
| [19] |
R.Ma, J.Wang, and Z.Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
|
| [20] |
E. A.Martens, C. R.Laing, and S. H.Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
|
| [21] |
C.Gu, G.St-Yves, and J.Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
|
| [22] |
C. R.Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D238(16), 1569 (2009)
|
| [23] |
J.Xie, E.Knobloch, and H. C.Kao, Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E90(2), 022919 (2014)
|
| [24] |
A.Zakharova, M.Kapeller, and E.Schöll, Chimera death: Symetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)
|
| [25] |
P. S.Dutta and T.Banerjee, Spatial coexistence of synchronized oscillation and death: A chimeralike state, Phys. Rev. E92(4), 042919 (2015)
|
| [26] |
T.Banerjee, Mean-field-diffusioninduced chimera death state, Europhys. Lett. 110(6), 60003 (2015)
|
| [27] |
M. J.Panaggio and D. M.Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity28(3), R67 (2015)
|
| [28] |
N. C.Rattenborg, C. J.Amlaner, andS. L.Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
|
| [29] |
E. M.Cherry and F. H.Fenton, Visualization of spiral and scroll waves in simulated and experimental cardiac tissue, New J. Phys. 10(12), 125016 (2008)
|
| [30] |
A.Rothkegel and K.Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators, New J. Phys. 16(5), 055006 (2014)
|
| [31] |
W.Singer, Neuronal synchrony: A versatile code for the definition of relations? Neuron24(1), 49 (1999)
|
| [32] |
J. F.Hipp, A. K.Engel, and M.Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron69(2), 387 (2011)
|
| [33] |
P. R.Roelfsema,A.Engel, P.König, and W.Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature385(6612), 157 (1997)
|
| [34] |
T. P.Vogels and L. F.Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons, J. Neurosci. 25(46), 10786 (2005)
|
| [35] |
A.Aertsen, M.Diesmann, and M.O.Gewaltig, Stable propagation of synchronous spiking in cortical neural networks, Nature402(6761), 529 (1999)
|
| [36] |
T.Womelsdorf, J. M.Schoffelen, R.Oostenveld, W.Singer, R.Desimone, A. K.Engel, and P.Fries, Modulation of neuronal interactions through neuronal synchronization, Science316(5831), 1609 (2007)
|
| [37] |
K.Xu, W.Huang, B.Li, M.Dhamala, and Z.Liu, Controlling self-sustained spiking activity by adding or removing one network link, Europhys. Lett. 102(5), 50002 (2013)
|
| [38] |
Z.Liu, Organization network enhanced detection and transmission of phase-locking, Europhys. Lett.100(6), 60002 (2012)
|
| [39] |
J.Wang and Z.Liu, A chain model for signal detection and transmission, Europhys. Lett.102(1), 10003 (2013)
|
| [40] |
K.Xu, X.Zhang, C.Wang, and Z.Liu, A simplified memory network model based on pattern formations, Sci. Rep. 4, 7568 (2014)
|
| [41] |
J.Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA79(8), 2554 (1982)
|
| [42] |
P. C.Matthews, R. E.Mirollo, and S. H.Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D52(2–3), 293 (1991)
|
| [43] |
M. C.Cross, J. L.Rogers, R.Lifshitz, and A.Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling, Phys. Rev. E73(3), 036205 (2006)
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg