Translocation time of a polymer chain through an energy gradient nanopore
Meng-Bo Luo, Shuang Zhang, Fan Wu, Li-Zhen Sun
Translocation time of a polymer chain through an energy gradient nanopore
The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker–Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.
polymer chain / translocation time / nanopore / Monte Carlo simulation / Fokker–Planck equation
[1] |
S. M. Simon and G. Blobel, A protein-conducting channel in the endoplasmic reticulum, Cell 65(3), 371 (1991)
CrossRef
ADS
Google scholar
|
[2] |
J. Helenius, D. T. W. Ng, C. L. Marolda, P. Walter, M. A. Valvano, and M. Aebi, Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein, Nature 415(6870), 447 (2002)
CrossRef
ADS
Google scholar
|
[3] |
B. Alberts, D. Bray, J. Lewis, M. Raft, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, New York: Garland Science, 1994
|
[4] |
V. R. Lingappa, J. Chaidez, C. S. Yost, and J. Hedgpeth, Determinants for protein localization: Betalactamase signal sequence directs globin across microsomal membranes, Proc. Natl. Acad. Sci. USA 81(2), 456 (1984)
CrossRef
ADS
Google scholar
|
[5] |
J. Han, S. W. Turner, and H. G. Craighead, Entropic trapping and escape of long DNA molecules at submicron size constriction, Phys. Rev. Lett. 83(8), 1688 (1999)
CrossRef
ADS
Google scholar
|
[6] |
J. Han and H. G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288(5468), 1026 (2000)
CrossRef
ADS
Google scholar
|
[7] |
B. H. Zimm and S. D. Levene, Problems and prospects in the theory of gel electrophoresis of DNA, Q. Rev. Biophys. 25(02), 171 (1992)
CrossRef
ADS
Google scholar
|
[8] |
J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93(24), 13770 (1996)
CrossRef
ADS
Google scholar
|
[9] |
A. Meller, L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86(15), 3435 (2001)
CrossRef
ADS
Google scholar
|
[10] |
A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano Lett. 5(7), 1193 (2005)
CrossRef
ADS
Google scholar
|
[11] |
S. W. Kowalczyk, A. R. Hall, and C. Dekker, Detection of local protein structures along DNA using solid-state nanopores, Nano Lett. 10(1), 324 (2010)
CrossRef
ADS
Google scholar
|
[12] |
A. Aksimentiev, Deciphering ionic current signatures of DNA transport through a nanopore, Nanoscale 2(4), 468 (2010)
CrossRef
ADS
Google scholar
|
[13] |
C. T. Wong and M. Muthukumar, Polymer translocation through alpha-hemolysin pore with tunable polymer-pore electrostatic interaction, J. Chem. Phys. 133(4), 045101 (2010)
CrossRef
ADS
Google scholar
|
[14] |
B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol. 6(10), 615 (2011)
CrossRef
ADS
Google scholar
|
[15] |
D. Panja, G. T. Barkema, and A. B. Kolomeisky, Through the eye of the needle: Recent advances in understanding biopolymer translocation, J. Phys.: Condens. Matter 25(41), 413101 (2013)
CrossRef
ADS
Google scholar
|
[16] |
A. Biesemans, M. Soskine, and G. Maglia, A protein rotaxane controls the translocation of proteins across a ClyA nanopore, Nano Lett. 15(9), 6076 (2015)
CrossRef
ADS
Google scholar
|
[17] |
J. Mathe, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of singlestranded DNA inside the a-hemolysin membrane channel, Proc. Natl. Acad. Sci. USA 102(35), 12377 (2005)
CrossRef
ADS
Google scholar
|
[18] |
I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, and J. H. Gundlach, Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci. USA 107(37), 16060 (2010)
CrossRef
ADS
Google scholar
|
[19] |
L. Liu, C. Yang, K. Zhao, J. Y. Li, and H. C. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor, Nat. Commun. 4, 2989 (2013)
CrossRef
ADS
Google scholar
|
[20] |
D. Rodriguez-Larrea and H. Bayley, Multistep protein unfolding during nanopore translocation, Nat. Nanotechnol. 8(4), 288 (2013)
CrossRef
ADS
Google scholar
|
[21] |
J. Wilson, L. Sloman, Z. He, and A. Aksimentiev, Graphene nanopores for protein sequencing, Adv. Funct. Mater. 26(27), 4830 (2016)
CrossRef
ADS
Google scholar
|
[22] |
W. Sung and P. J. Park, Polymer translocation through a pore in a membrane, Phys. Rev. Lett. 77(4), 783 (1996)
CrossRef
ADS
Google scholar
|
[23] |
M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys. 111(22), 10371 (1999)
CrossRef
ADS
Google scholar
|
[24] |
M. Muthukumar, Polymer escape through a nanopore, J. Chem. Phys. 118(11), 5174 (2003)
CrossRef
ADS
Google scholar
|
[25] |
A. Gopinathan and Y. W. Kim, Polymer translocation in crowded environments, Phys. Rev. Lett. 99(22), 228106 (2007)
CrossRef
ADS
Google scholar
|
[26] |
J. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation, Phys. Rev. E 85(4), 041801 (2012)
CrossRef
ADS
Google scholar
|
[27] |
J. M. Polson and A. C. M. McCaffrey, Polymer translocation dynamics in the quasi-static limit, J. Chem. Phys. 138(17), 174902 (2013)
CrossRef
ADS
Google scholar
|
[28] |
J. Chuang, Y. Kantor, and M. Kardar, Anomalous dynamics of translocation,Phys. Rev. E 65(1), 011802 (2001)
CrossRef
ADS
Google scholar
|
[29] |
A. Milchev, K. Binder, and A. Bhattacharya, Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model, J. Chem. Phys. 121(12), 6042 (2004)
CrossRef
ADS
Google scholar
|
[30] |
K. Luo, T. Ala-Nissila, S. C. Ying, and A. Bhattacharya, Influence of polymer-pore interactions on translocation, Phys. Rev. Lett. 99(14), 148102 (2007)
CrossRef
ADS
Google scholar
|
[31] |
M. B. Luo, Translocation of polymer chains through interacting nanopores, Polymer 48(26), 7679 (2007)
CrossRef
ADS
Google scholar
|
[32] |
A. Milchev, L. Klushin, A. Skvortsov, and K. Binder, Ejection of a polymer chain from a nanopore: Theory and computer experiment, Macromolecules 43(16), 6877 (2010)
CrossRef
ADS
Google scholar
|
[33] |
M. B. Luo and W. P. Cao, Influence of polymer-pore interaction on the translocation of a polymer through a nanopore, Phys. Rev. E 86(3), 031914 (2012)
CrossRef
ADS
Google scholar
|
[34] |
C. J. Rasmussen, A. Vishnyakov, and A. V. Neimark, Translocation dynamics of freely jointed Lennard–Jones chains into adsorbing pores, J. Chem. Phys. 137(14), 144903 (2012)
CrossRef
ADS
Google scholar
|
[35] |
H. de Haan and G. Slater, Translocation of “rod-coil” polymers: Probing the structure of single molecules within nanopores, Phys. Rev. Lett. 110(4), 048101 (2013)
CrossRef
ADS
Google scholar
|
[36] |
S. Markosyan, P. M. De Biase, L. Czapla, O. Samoylova, G. Singh, J. Cuervo, D. P. Tieleman, and S. Y. Noskov, Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore, Nanoscale 6(15), 9006 (2014)
CrossRef
ADS
Google scholar
|
[37] |
C. Wang, Y. C. Chen, S. Zhang, and M. B. Luo, Translocation of diblock copolymer through compound channels: A Monte Carlo simulation study, Macromolecules 47(20), 7215 (2014)
CrossRef
ADS
Google scholar
|
[38] |
A. Fiasconaro, J. J. Mazo, and F. Falo, Active polymer translocation in the three-dimensional domain, Phys. Rev. E 91(2), 022113 (2015)
CrossRef
ADS
Google scholar
|
[39] |
R. Adhikari and A. Bhattacharya, Deconvoluting chain heterogeneity from driven translocation through a nanopore, EPL 109(3), 38001 (2015)
CrossRef
ADS
Google scholar
|
[40] |
D. Mondal and M. Muthukumar, Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain, J. Chem. Phys. 145(8), 084906 (2016)
CrossRef
ADS
Google scholar
|
[41] |
L. Z. Sun, W. P. Cao, and M. B. Luo, Free energy landscape for the translocation of polymer through an interacting pore, J. Chem. Phys. 131(19), 194904 (2009)
CrossRef
ADS
Google scholar
|
[42] |
Y. Liu and L. Yobas, Slowing DNA Translocation in a nanofluidic field-effect transistor, ACS Nano 10(4), 3985 (2016)
CrossRef
ADS
Google scholar
|
[43] |
S. Zhang, C. Wang, L. Z. Sun, C. Y. Li, and M. B. Luo, Polymer translocation through a gradient channel, J. Chem. Phys. 139(4), 044902 (2013)
CrossRef
ADS
Google scholar
|
[44] |
G. Maglia, M. R. Restrepo, E. Mikhailova, and H. Bayley, Enhanced translocation of single DNA molecules through a-hemolysin nanopores by manipulation of internal charge, Proc. Natl. Acad. Sci. USA 105(50), 19720 (2008)
CrossRef
ADS
Google scholar
|
[45] |
D. Wang, S. Harrer, B. Luan, G. Stolovitzky, H. Peng, and A. Afzali-Ardakani, Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane, Sci. Rep. 4, 3985 (2014)
|
[46] |
Y. He, M. Tsutsui, M. Taniguchi, and T. Kawai, DNA capture in nanopores for genome sequencing: challenges and opportunities, J. Mater. Chem. 22(27), 13423 (2012)
CrossRef
ADS
Google scholar
|
[47] |
P. M. De Biase, E. N. Ervin, P. Pal, O. Samoylova, S. Markosyan, M. G. Keehan, G. A. Barrall, and S. Y. Noskov, What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study, Nanoscale 8(22), 11571 (2016)
CrossRef
ADS
Google scholar
|
[48] |
S. G. Whittington, Self-avoiding walks terminally attached to an interface, J. Chem. Phys. 63(2), 779 (1975)
CrossRef
ADS
Google scholar
|
[49] |
S. Mirigian, Y. Wang, and M. Muthukumar, Translocation of a heterogeneous polymer, J. Chem. Phys. 137(6), 064904 (2012)
CrossRef
ADS
Google scholar
|
[50] |
K. Luo and R. Metzler, Polymer translocation into a fluidic channel through a nanopore, Phys. Rev. E 82(2), 021922 (2010)
CrossRef
ADS
Google scholar
|
[51] |
C. Wang, Y. C. Chen, Y. L. Zhou, and M. B. Luo, Escape of polymer chains from an attractive channel under electrical force, J. Chem. Phys. 134(6), 064905 (2011)
CrossRef
ADS
Google scholar
|
[52] |
M. B. Luo, Translocation of polymer through nanopore: Dissipative particle dynamics simulation, Chin. Sci. Bull. 59(35), 4960 (2014)
CrossRef
ADS
Google scholar
|
[53] |
E. Slonkina and A. B. Kolomeisky, Polymer translocation through a long nanopore, J. Chem. Phys. 118(15), 7112 (2003)
CrossRef
ADS
Google scholar
|
[54] |
H. Li, C. J. Qian, C. Wang, and M. B. Luo, Critical adsorption of a flexible polymer confined between two parallel interacting surfaces, Phys. Rev. E 87(1), 012602 (2013)
CrossRef
ADS
Google scholar
|
[55] |
M. B. Luo, Q. H. Yang, C. Y. Zhang, and F. Wu, Study on the diffusion of polymer in long cylindrical tubes, Polymer 101, 192 (2016)
CrossRef
ADS
Google scholar
|
[56] |
J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, Continuous base identification for singlemolecule nanopore DNA sequencing, Nat. Nanotechnol. 4(4), 265 (2009)
CrossRef
ADS
Google scholar
|
[57] |
M. Muthukumar, Communication: Charge, diffusion, and mobility of proteins through nanopores, J. Chem. Phys. 141(8), 081104 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |