Multiple conical spin order in spinel structure stabilized by magnetic anisotropy

Xiao-Yan Yao, Li-Juan Yang

PDF(3808 KB)
PDF(3808 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127501. DOI: 10.1007/s11467-017-0653-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiple conical spin order in spinel structure stabilized by magnetic anisotropy

Author information +
History +

Abstract

Conical spin order, where the spin components along the conical axis form magnetization while the spiral parts induce ferroelectric polarization, possesses multiferroicity with inherent magnetoelectric coupling. A Monte Carlo simulation performed using a classical Heisenberg spinel (AB2O4) model reveals a multiple conical spin order, i.e., three modulations with different cone angles and wavelengths on A sites and two alternate B sites. The spin order not only exists as the ground state but also survives locally stably in a larger parameter region. The whole existence range can be effectively expanded by anisotropy to cover the cases of CoCr2O4 and MnCr2O4. The multiple conical spin order is well maintained and finely tuned by frustration and anisotropy over the whole existence range, and the magnetic and ferroelectric properties are influenced correspondingly.

Keywords

conical spin order / multiferroicity / spinel structure / Monte Carlo simulation

Cite this article

Download citation ▾
Xiao-Yan Yao, Li-Juan Yang. Multiple conical spin order in spinel structure stabilized by magnetic anisotropy. Front. Phys., 2017, 12(3): 127501 https://doi.org/10.1007/s11467-017-0653-2

References

[1]
Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett. 96(20), 207204 (2006)
CrossRef ADS Google scholar
[2]
I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing, Appl. Phys. Lett. 94(4), 042505 (2009)
CrossRef ADS Google scholar
[3]
Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T. Chen, M. van Veenendaal, T. A. Kaplan, and S. W. Cheong, Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4, Phys. Rev. Lett. 102(6), 067601 (2009)
CrossRef ADS Google scholar
[4]
I. Urcelay-Olabarria, E. Ressouche, A. A. Mukhin, V. Y. Ivanov, A. M. Balbashov, J. L. Garcia-Munoz, and V. Skumryev, Conical antiferromagnetic order in the ferroelectric phase of Mn0.8Co0.2WO4 resulting from the competition between collinear and cycloidal structures, Phys. Rev. B 85(22), 224419 (2012)
CrossRef ADS Google scholar
[5]
N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, and Y. Tokura, Electricdipole- active magnetic resonance in the conical-spin magnet Ba2Mg2Fe12O22, Phys. Rev. B 80(22), 220406 (2009)
CrossRef ADS Google scholar
[6]
S. Ishiwata, Y. Taguchi, Y. Tokunaga, H. Murakawa, Y. Onose, and Y. Tokura, Electric polarization induced by transverse magnetic field in the anisotropycontrolled conical helimagnet Ba2(Mg1−xZnx)2Fe12O22, Phys. Rev. B 79(18), 180408 (2009)
CrossRef ADS Google scholar
[7]
H. B. Lee, S. H. Chun, K. W. Shin, B. G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S. N. Yun, T. Y. Joung, and J. H. Chung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22, Phys. Rev. B 86(9), 094435 (2012)
CrossRef ADS Google scholar
[8]
L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, Z. R. Yang, J. G. Wan, and J. M. Liu, Coupled ferroelectric polarization and magnetization in spinel FeCr2S4, Sci. Rep. 4, 6530 (2014)
CrossRef ADS Google scholar
[9]
Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)
CrossRef ADS Google scholar
[10]
Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Multiferroic M-type hexaferrites with a roomtemperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105(25), 257201 (2010)
CrossRef ADS Google scholar
[11]
M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, and T. Kimura, Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41, Phys. Rev. Lett. 106(8), 087201 (2011)
CrossRef ADS Google scholar
[12]
S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet, Science 319(5870), 1643 (2008)
CrossRef ADS Google scholar
[13]
H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, and Y. Tokura, Generation of electric polarization with rotating magnetic field in helimagnet ZnCr2Se4, J. Phys. Soc. Jpn. 77(4), 043709 (2008)
CrossRef ADS Google scholar
[14]
H. Murakawa, Y. Onose, F. Kagawa, S. Ishiwata, Y. Kaneko, and Y. Tokura, Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0.55Y0.45MnO3, Phys. Rev. Lett. 101(19), 197207 (2008)
CrossRef ADS Google scholar
[15]
X. Yao, V. C. Lo, and J. M. Liu, Magnetic field controlled reversal of ferroelectric polarization in conical spin ordered multiferroics: Monte Carlo simulation, J. Appl. Phys. 106(7), 073901 (2009)
CrossRef ADS Google scholar
[16]
X. Yao, Continuous rotation of magnetization controlled by electric field in multiferroic state originated from conical spin order, J. Phys. Soc. Jpn. 79(4), 043801 (2010)
CrossRef ADS Google scholar
[17]
T. A. Kaplan, K. Dwight, D. Lyons, and N. Menyuk, Classical theory of the ground spin state in spinels, J. Appl. Phys. 32(3), S13 (1961)
CrossRef ADS Google scholar
[18]
D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, Classical theory of the ground spin-state in cubic spinels, Phys. Rev. 126(2), 540 (1962)
CrossRef ADS Google scholar
[19]
J. M. Hastings and L. M. Corliss, Magnetic structure of manganese chromite, Phys. Rev. 126(2), 556 (1962)
CrossRef ADS Google scholar
[20]
N. Menyuk, K. Dwight, and A. Wold, Ferrimagnetic spiral configurations in cobalt chromite, J. Phys. (Paris) 25(5), 528 (1964)
CrossRef ADS Google scholar
[21]
K. Tomiyasu, J. Fukunaga, and H. Suzuki, Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements, Phys. Rev. B 70(21), 214434 (2004)
CrossRef ADS Google scholar
[22]
C. Ederer and M. Komelj, Magnetic coupling in CoCr2O4 and MnCr2O4: An LSDA+ Ustudy, Phys. Rev. B 76(6), 064409 (2007)
CrossRef ADS Google scholar
[23]
G. Lawes, B. Melot, K. Page, C. Ederer, M. A. Hayward, T. Proffen, and R. Seshadri, Dielectric anomalies and spiral magnetic order in CoCr2O4, Phys. Rev. B 74(2), 024413 (2006)
CrossRef ADS Google scholar
[24]
X. Yao, Stable and locally stable conditions for a conical spin state in the spinel structure, EPL 102(6), 67013 (2013)
CrossRef ADS Google scholar
[25]
H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett. 95(5), 057205 (2005)
CrossRef ADS Google scholar
[26]
I. A. Sergienko and E. Dagotto, Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites, Phys. Rev. B 73(9), 094434 (2006)
CrossRef ADS Google scholar
[27]
H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. I. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, and K. Hirota, Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22, Phys. Rev. B 80(18), 180419 (2009)
CrossRef ADS Google scholar
[28]
S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Magnetic-ion-induced displacive electric polarization in FeO5 bipyramidal units of (Ba, Sr)Fe12O19 hexaferrites, Phys. Rev. B 90(18), 180404(R) (2014)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3808 KB)

Accesses

Citations

Detail

Sections
Recommended

/