Multiple conical spin order in spinel structure stabilized by magnetic anisotropy
Xiao-Yan Yao, Li-Juan Yang
Multiple conical spin order in spinel structure stabilized by magnetic anisotropy
Conical spin order, where the spin components along the conical axis form magnetization while the spiral parts induce ferroelectric polarization, possesses multiferroicity with inherent magnetoelectric coupling. A Monte Carlo simulation performed using a classical Heisenberg spinel (AB2O4) model reveals a multiple conical spin order, i.e., three modulations with different cone angles and wavelengths on A sites and two alternate B sites. The spin order not only exists as the ground state but also survives locally stably in a larger parameter region. The whole existence range can be effectively expanded by anisotropy to cover the cases of CoCr2O4 and MnCr2O4. The multiple conical spin order is well maintained and finely tuned by frustration and anisotropy over the whole existence range, and the magnetic and ferroelectric properties are influenced correspondingly.
conical spin order / multiferroicity / spinel structure / Monte Carlo simulation
[1] |
Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide, Phys. Rev. Lett. 96(20), 207204 (2006)
CrossRef
ADS
Google scholar
|
[2] |
I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing, Appl. Phys. Lett. 94(4), 042505 (2009)
CrossRef
ADS
Google scholar
|
[3] |
Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T. Chen, M. van Veenendaal, T. A. Kaplan, and S. W. Cheong, Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4, Phys. Rev. Lett. 102(6), 067601 (2009)
CrossRef
ADS
Google scholar
|
[4] |
I. Urcelay-Olabarria, E. Ressouche, A. A. Mukhin, V. Y. Ivanov, A. M. Balbashov, J. L. Garcia-Munoz, and V. Skumryev, Conical antiferromagnetic order in the ferroelectric phase of Mn0.8Co0.2WO4 resulting from the competition between collinear and cycloidal structures, Phys. Rev. B 85(22), 224419 (2012)
CrossRef
ADS
Google scholar
|
[5] |
N. Kida, D. Okuyama, S. Ishiwata, Y. Taguchi, R. Shimano, K. Iwasa, T. Arima, and Y. Tokura, Electricdipole- active magnetic resonance in the conical-spin magnet Ba2Mg2Fe12O22, Phys. Rev. B 80(22), 220406 (2009)
CrossRef
ADS
Google scholar
|
[6] |
S. Ishiwata, Y. Taguchi, Y. Tokunaga, H. Murakawa, Y. Onose, and Y. Tokura, Electric polarization induced by transverse magnetic field in the anisotropycontrolled conical helimagnet Ba2(Mg1−xZnx)2Fe12O22, Phys. Rev. B 79(18), 180408 (2009)
CrossRef
ADS
Google scholar
|
[7] |
H. B. Lee, S. H. Chun, K. W. Shin, B. G. Jeon, Y. S. Chai, K. H. Kim, J. Schefer, H. Chang, S. N. Yun, T. Y. Joung, and J. H. Chung, Heliconical magnetic order and field-induced multiferroicity of the Co2Y-type hexaferrite Ba0.3Sr1.7Co2Fe12O22, Phys. Rev. B 86(9), 094435 (2012)
CrossRef
ADS
Google scholar
|
[8] |
L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, Z. R. Yang, J. G. Wan, and J. M. Liu, Coupled ferroelectric polarization and magnetization in spinel FeCr2S4, Sci. Rep. 4, 6530 (2014)
CrossRef
ADS
Google scholar
|
[9] |
Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)
CrossRef
ADS
Google scholar
|
[10] |
Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Multiferroic M-type hexaferrites with a roomtemperature conical state and magnetically controllable spin helicity, Phys. Rev. Lett. 105(25), 257201 (2010)
CrossRef
ADS
Google scholar
|
[11] |
M. Soda, T. Ishikura, H. Nakamura, Y. Wakabayashi, and T. Kimura, Magnetic ordering in relation to the room-temperature magnetoelectric effect of Sr3Co2Fe24O41, Phys. Rev. Lett. 106(8), 087201 (2011)
CrossRef
ADS
Google scholar
|
[12] |
S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet, Science 319(5870), 1643 (2008)
CrossRef
ADS
Google scholar
|
[13] |
H. Murakawa, Y. Onose, K. Ohgushi, S. Ishiwata, and Y. Tokura, Generation of electric polarization with rotating magnetic field in helimagnet ZnCr2Se4, J. Phys. Soc. Jpn. 77(4), 043709 (2008)
CrossRef
ADS
Google scholar
|
[14] |
H. Murakawa, Y. Onose, F. Kagawa, S. Ishiwata, Y. Kaneko, and Y. Tokura, Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0.55Y0.45MnO3, Phys. Rev. Lett. 101(19), 197207 (2008)
CrossRef
ADS
Google scholar
|
[15] |
X. Yao, V. C. Lo, and J. M. Liu, Magnetic field controlled reversal of ferroelectric polarization in conical spin ordered multiferroics: Monte Carlo simulation, J. Appl. Phys. 106(7), 073901 (2009)
CrossRef
ADS
Google scholar
|
[16] |
X. Yao, Continuous rotation of magnetization controlled by electric field in multiferroic state originated from conical spin order, J. Phys. Soc. Jpn. 79(4), 043801 (2010)
CrossRef
ADS
Google scholar
|
[17] |
T. A. Kaplan, K. Dwight, D. Lyons, and N. Menyuk, Classical theory of the ground spin state in spinels, J. Appl. Phys. 32(3), S13 (1961)
CrossRef
ADS
Google scholar
|
[18] |
D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, Classical theory of the ground spin-state in cubic spinels, Phys. Rev. 126(2), 540 (1962)
CrossRef
ADS
Google scholar
|
[19] |
J. M. Hastings and L. M. Corliss, Magnetic structure of manganese chromite, Phys. Rev. 126(2), 556 (1962)
CrossRef
ADS
Google scholar
|
[20] |
N. Menyuk, K. Dwight, and A. Wold, Ferrimagnetic spiral configurations in cobalt chromite, J. Phys. (Paris) 25(5), 528 (1964)
CrossRef
ADS
Google scholar
|
[21] |
K. Tomiyasu, J. Fukunaga, and H. Suzuki, Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements, Phys. Rev. B 70(21), 214434 (2004)
CrossRef
ADS
Google scholar
|
[22] |
C. Ederer and M. Komelj, Magnetic coupling in CoCr2O4 and MnCr2O4: An LSDA+ Ustudy, Phys. Rev. B 76(6), 064409 (2007)
CrossRef
ADS
Google scholar
|
[23] |
G. Lawes, B. Melot, K. Page, C. Ederer, M. A. Hayward, T. Proffen, and R. Seshadri, Dielectric anomalies and spiral magnetic order in CoCr2O4, Phys. Rev. B 74(2), 024413 (2006)
CrossRef
ADS
Google scholar
|
[24] |
X. Yao, Stable and locally stable conditions for a conical spin state in the spinel structure, EPL 102(6), 67013 (2013)
CrossRef
ADS
Google scholar
|
[25] |
H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett. 95(5), 057205 (2005)
CrossRef
ADS
Google scholar
|
[26] |
I. A. Sergienko and E. Dagotto, Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites, Phys. Rev. B 73(9), 094434 (2006)
CrossRef
ADS
Google scholar
|
[27] |
H. Sagayama, K. Taniguchi, N. Abe, T. Arima, Y. Nishikawa, S. I. Yano, Y. Kousaka, J. Akimitsu, M. Matsuura, and K. Hirota, Two distinct ferroelectric phases in the multiferroic Y-type hexaferrite Ba2Mg2Fe12O22, Phys. Rev. B 80(18), 180419 (2009)
CrossRef
ADS
Google scholar
|
[28] |
S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Magnetic-ion-induced displacive electric polarization in FeO5 bipyramidal units of (Ba, Sr)Fe12O19 hexaferrites, Phys. Rev. B 90(18), 180404(R) (2014)
|
/
〈 | 〉 |