Quantum dot behavior in transition metal dichalcogenides nanostructures
Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo
Quantum dot behavior in transition metal dichalcogenides nanostructures
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.
transition metal dichalcogenides (TMDCs) / heterostructures / electron transport / gate-defined quantum dot
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , and A. A. Firsov , Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
K. S. Novoselov, D. Jiang, F. Schedin , T. J. Booth , V. V. Khotkevich , S. V. Morozov , and A. K. Geim , Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
CrossRef
ADS
Google scholar
|
[3] |
A. Gupta, T. Sakthivel, and S. Seal , Recent development in 2D materials beyond graphene, Prog. Mater. Sci. 73, 44 (2015)
CrossRef
ADS
Google scholar
|
[4] |
A. B. Kaul, Two-dimensional atomic crystals beyond graphene, Proc. SPIE 9083, 908302 (2014)
CrossRef
ADS
Google scholar
|
[5] |
K. S. Novoselov, A. K. Geim, S. V. Morozov , D. Jiang, M. I. Katsnelson, I. V. Grigorieva , S. V. Dubonos , and A. A. Firsov , Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[6] |
Y. B. Zhang, Y. W. Tan, H. L. Stormer , and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[7] |
C. Lee, X. D. Wei, J. W. Kysar , and J. Hone , Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
CrossRef
ADS
Google scholar
|
[8] |
R. R. Nair, P. Blake, A. N. Grigorenko , K. S. Novoselov , T. J. Booth , T. Stauber , N. M. R. Peres , and A. K. Geim , Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
CrossRef
ADS
Google scholar
|
[9] |
J. Guttinger, T. Frey, C. Stampfer , T. Ihn, and K. Ensslin, Spin states in graphene quantum dots, Phys. Rev. Lett. 105(11), 116801 (2010)
CrossRef
ADS
Google scholar
|
[10] |
K. I. Bolotin, K. J. Sikes, Z. Jiang , M. Klima , G. Fudenberg , J. Hone , P. Kim, and H. L. Stormer , Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9–10), 351 (2008)
CrossRef
ADS
Google scholar
|
[11] |
X. Du, I. Skachko, A. Barker , and E. Y. Andrei , Approaching ballistic transport in suspended graphene, Nat. Nanotechnol. 3(3), 491 (2008)
CrossRef
ADS
Google scholar
|
[12] |
C. R. Dean, A. F. Young, I. Meric , C. Lee, L. Wang, S. Sorgenfrei , K. Watanabe , T. Taniguchi , P. Kim, K. L. Shepard, and J. Hone , Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(5), 722 (2010)
CrossRef
ADS
Google scholar
|
[13] |
M. Q. Sui, G. R. Chen, L. G. Ma , W. Y. Shan , D. Tian , K. Watanabe , T. Taniguchi , X. F. Jin , W. Yao, D. Xiao, and Y. B. Zhang , Gate-tunable topological valley transport in bilayer graphene, Nat. Phys. 11(11), 1027 (2015)
|
[14] |
Y. Shimazaki, M. Yamamoto, I. V. Borzenets , K. Watanabe , T. Taniguchi , and S. Tarucha , Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene, Nat. Phys. 11(11), 1032 (2015)
|
[15] |
B. Trauzettel, D. V. Bulaev, D. Loss , and G. Burkard , Spin qubits in graphene quantum dots, Nat. Phys. 3(3), 192 (2007)
|
[16] |
P. Recher and B. Trauzettel, Quantum dots and spin qubits in graphene, Nanotechnology 21(30), 302001 (2010)
CrossRef
ADS
Google scholar
|
[17] |
A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
|
[18] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef
ADS
Google scholar
|
[19] |
Y. W. Son, M. L. Cohen, and S. G. Louie , Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef
ADS
Google scholar
|
[20] |
L. Yang, C. H. Park, Y. W. Son , M. L. Cohen , and S. G. Louie , Quasiparticle energies and band gaps in graphene nanoribbons, Phys. Rev. Lett. 99(18), 186801 (2007)
CrossRef
ADS
Google scholar
|
[21] |
C. Stampfer, J. Guttinger, S. Hellmuller , F. Molitor , K. Ensslin , and T. Ihn, Energy gaps in etched graphene nanoribbons, Phys. Rev. Lett. 102(5), 056403 (2009)
CrossRef
ADS
Google scholar
|
[22] |
D. Wei, H. O. Li, G. Cao , G. Luo, Z. X. Zheng, T. Tu , M. Xiao , G. C. Guo , H. W. Jiang , and G. P. Guo , Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates, Sci. Rep. 3, 3175 (2013)
CrossRef
ADS
Google scholar
|
[23] |
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
CrossRef
ADS
Google scholar
|
[24] |
J. R. Petta, A. C. Johnson, J. M. Taylor , E. A. Laird , A. Yacoby , M. D. Lukin , C. M. Marcus , M. P. Hanson , and A. C. Gossard , Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309(5744), 2180 (2005)
CrossRef
ADS
Google scholar
|
[25] |
R. Hanson, L. P. Kouwenhoven, J. R. Petta , S. Tarucha , and L. M. K. Vandersypen , Spins in few-electron quantum dots, Rev. Mod. Phys. 79(4), 1217 (2007)
CrossRef
ADS
Google scholar
|
[26] |
A. M. Goossens, S. C. M. Driessen, T. A. Baart, K. Watanabe , T. Taniguchi , and L. M. K. Vandersypen , Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices, Nano Lett. 12(12), 4656 (2012)
CrossRef
ADS
Google scholar
|
[27] |
A. Muller, B. Kaestner, F. Hohls , T. Weimann , K. Pierz , and H. W. Schumacher , Bilayer graphene quantum dot defined by topgates, J. Appl. Phys. 115(23), 233710 (2014)
CrossRef
ADS
Google scholar
|
[28] |
S. A. Han, R. Bhatia, and S.-W. Kim , Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides, Nano Converg. 2(1), 17(2015)
CrossRef
ADS
Google scholar
|
[29] |
X. D. Duan, C. Wang, A. L. Pan , R. Q. Yu , and X. F. Duan , Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges, Chem. Soc. Rev. 44(24), 8859 (2015)
CrossRef
ADS
Google scholar
|
[30] |
K. F. Mak, K. He, J. Shan , and T. F. Heinz , Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(7), 494 (2012)
CrossRef
ADS
Google scholar
|
[31] |
K. F. Mak, C. Lee, J. Hone , J. Shan , and T. F. Heinz , Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef
ADS
Google scholar
|
[32] |
K. F. Mak, K. L. McGill, J. Park , and P. L. McEuen , The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)
CrossRef
ADS
Google scholar
|
[33] |
T. Cao, G. Wang, W. Han , H. Ye, C. Zhu, J. Shi , Q. Niu, P. Tan, E. Wang , B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3, 887 (2012)
CrossRef
ADS
Google scholar
|
[34] |
D. Xiao, G.B. Liu, W. Feng , X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef
ADS
Google scholar
|
[35] |
H. Zeng, J. Dai, W. Yao , D. Xiao , and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(7), 490 (2012)
CrossRef
ADS
Google scholar
|
[36] |
J. F. Sun and F. Cheng, Spin and valley transport in monolayers of MoS2, J. Appl. Phys. 115(13), 133703 (2014)
CrossRef
ADS
Google scholar
|
[37] |
Z. Ye, D. Sun, and T. F. Heinz , Optical manipulation of valley pseudospin, Nat. Phys. (2016) (advance online publication)
|
[38] |
A. W. Tsen, B. Hunt, Y. D. Kim , Z. J. Yuan , S. Jia, R. J. Cava, J. Hone , P. Kim, C. R. Dean, and A. N. Pasupathy , Nature of the quantum metal in a two-dimensional crystalline superconductor, Nat. Phys. 12(3), 208 (2016)
|
[39] |
Y. Kobayashi, S. Sasaki, S. Mori , H. Hibino , Z. Liu, K. Watanabe, T. Taniguchi , K. Suenaga , Y. Maniwa , and Y. Miyata , Growth and optical properties of highquality monolayer WS2 on graphite, ACS Nano 9(9), 4056 (2015)
CrossRef
ADS
Google scholar
|
[40] |
A. Allain and A. Kis, Electron and hole mobilities in single-layer WSe2, ACS Nano 8(8), 7180 (2014)
|
[41] |
G. H. Lee, Y. J. Yu, C. Lee , C. Dean , K. L. Shepard , P. Kim, and J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett. 99(24), 243114 (2011)
CrossRef
ADS
Google scholar
|
[42] |
A. Splendiani, L. Sun, Y. Zhang , T. Li, J. Kim, C. Y. Chim , G. Galli , and F. Wang , Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(10), 1271 (2010)
CrossRef
ADS
Google scholar
|
[43] |
A. Splendiani, L. Sun, Y. B. Zhang , T. S. Li , J. Kim, C. Y. Chim, G. Galli , and F. Wang , Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10(10), 1271 (2010)
CrossRef
ADS
Google scholar
|
[44] |
T. S. Li and G. L. Galli, Electronic properties of MoS2 nanoparticles, J. Phys. Chem. C 111(44), 16192 (2007)
CrossRef
ADS
Google scholar
|
[45] |
Y. Ding, Y. L. Wang, J. Ni , L. Shi, S. Q. Shi, and W. H. Tang , First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers, Physica B 406(11), 2254 (2011)
CrossRef
ADS
Google scholar
|
[46] |
B. Radisavljevic, A. Radenovic, J. Brivio , V. Giacometti , and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(6), 147 (2011)
CrossRef
ADS
Google scholar
|
[47] |
J. Kang, S. Tongay, J. Zhou , J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 21(1), 012111 (2013)
CrossRef
ADS
Google scholar
|
[48] |
G. H. Lee, X. Cui, Y. D. Kim , G. Arefe , X. Zhang , C. H. Lee , F. Ye, K. Watanabe, T. Taniguchi , P. Kim, and J. Hone, Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gatecontrollable contact, resistance, and threshold voltage, ACS Nano 9(9), 7019 (2015)
CrossRef
ADS
Google scholar
|
[49] |
Y. Liu, H. Wu, H. C. Cheng , S. Yang , E. B. Zhu , Q. Y. He , M. N. Ding , D. H. Li , J. Guo, N. O. Weiss, Y. Huang , and X. F. Duan , Toward barrier free contact to molybdenum disulfide using graphene electrodes, Nano Lett. 15(5), 3030 (2015)
CrossRef
ADS
Google scholar
|
[50] |
M. W. Iqbal, M. Z. Iqbal, M. F. Khan , M. A. Shehzad , Y. Seo, J. H. Park, C. Hwang , and J. Eom, High-mobility and air-stable single-layer WS2 fieldeffect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films, Sci. Rep. 5, 10699 (2015)
CrossRef
ADS
Google scholar
|
[51] |
D. Ovchinnikov, A. Allain, Y. S. Huang , D. Dumcenco , and A. Kis, Electrical transport properties of singlelayer WS2, ACS Nano 8(8), 8174 (2014)
CrossRef
ADS
Google scholar
|
[52] |
H. C. P.Movva, A.Rai, S.Kang, K. Kim, B.Fallahazad , T.Taniguchi, K.Watanabe, E.Tutuc , and S. K.Banerjee , High-mobility holes in dual-gated WSe2 field-effect transistors, ACS Nano9(9), 10402 (2015)
CrossRef
ADS
Google scholar
|
[53] |
H. C. P.Movva, A.Rai, S.irakawa, M. Tanaka, and T.Matsusue , Interface roughness scattering in GaAs/AlAs quantum wells, Appl. Phys. Lett. 51(23), 1934 (1987)
CrossRef
ADS
Google scholar
|
[54] |
S.Kim, A.Konar, W. S.Hwang, J.H. Lee, J.Lee , J.Yang, C.Jung, H.Kim, J. B. Yoo, J. Y.Choi , Y. W.Jin, S. Y.Lee, D.Jena, W. Choi, and K.Kim , Highmobility and low-power thin-film transistors based on multilayer MoS2 crystals, Nat. Commun. 3, 1011 (2012)
CrossRef
ADS
Google scholar
|
[55] |
R.Kappera, D.Voiry, S. E.Yalcin , B.Branch, G.Gupta, A. D.Mohite , and M.Chhowalla , Phaseengineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater.13(12), 1128 (2014)
CrossRef
ADS
Google scholar
|
[56] |
Y.Liu, H.Wu, H. C.Cheng, S. Yang, E.Zhu , Q.He, M.Ding, D.Li, J. Guo, N. O.Weiss , Y.Huang, and X.Duan, Toward barrier free contact to molybdenum disulfide using graphene electrodes, Nano Lett. 15(5), 3030 (2015)
CrossRef
ADS
Google scholar
|
[57] |
X.Cui, G. H.Lee, Y. D.Kim, G. Arefe, P. Y.Huang , C. H.Lee, D. A.Chenet, X.Zhang , L.Wang,F.Ye, F.Pizzocchero , B. S.Jessen, K.Watanabe, T.Taniguchi , D. A.Muller, T.Low, P.Kim, and J. Hone, Multiterminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(10), 534 (2015)
CrossRef
ADS
Google scholar
|
[58] |
L.Wang, I.Meric, P. Y.Huang, Q. Gao, Y.Gao , H.Tran, T.Taniguchi, K.Watanabe , L. M.Campos, D. A.Muller, J.Guo , P.Kim, J.Hone, K. L.Shepard , and C. R.Dean, One-dimensional electrical contact to a twodimensional material, Science342(6158), 614 (2013)
CrossRef
ADS
Google scholar
|
[59] |
A.Castellanos-Gomez, M. Buscema, R.Molenaar , V.Singh, L.Janssen, H. S. J.van der Zant , and G. A.Steele , Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater. 1(1), 011002 (2014)
|
[60] |
A. K.Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature499(7459), 419 (2013)
CrossRef
ADS
Google scholar
|
[61] |
K. S.Novoselov, A. Mishchenko, A.Carvalho , and A. H. C.Neto , 2D materials and van der Waals heterostructures, Science353(6298), 461 (2016)
CrossRef
ADS
Google scholar
|
[62] |
Z. H.Ni, H. M.Wang, J.Kasim, H. M. Fan,T.Yu , Y. H.Wu, Y. P.Feng, and Z. X.Shen , Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett. 7(7), 2758 (2007)
CrossRef
ADS
Google scholar
|
[63] |
Y. K.Koh, M. H.Bae, D. G.Cahill , and E.Pop, Reliably counting atomic planes of few-layer graphene (n>4), ACS Nano5(5), 269 (2011)
CrossRef
ADS
Google scholar
|
[64] |
Z.Cheng, Q.Zhou, C.Wang, Q. Li, C.Wang , and Y.Fang, Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices,Nano Lett. 11(11), 767 (2011)
CrossRef
ADS
Google scholar
|
[65] |
A. C.Ferrari, J. C.Meyer, V.Scardaci, C. Casiraghi, M.Lazzeri , F.Mauri, S.Piscanec, D.Jiang , K. S.Novoselov, S. Roth, and A. K.Geim , Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)
CrossRef
ADS
Google scholar
|
[66] |
D.Graf, F.Molitor, K.Ensslin , C.Stampfer, A.Jungen, C.Hierold , and L.Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene, Nano Lett. 7(7), 238 (2007)
CrossRef
ADS
Google scholar
|
[67] |
Y.Zhao,X.Luo, H.Li, J. Zhang, P. T.Araujo , C. K.Gan, J.Wu, H.Zhang, S. Y. Quek, M. S.Dresselhaus , and Q.Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2, Nano Lett. 13(3), 1007 (2013)
CrossRef
ADS
Google scholar
|
[68] |
C.Lee, H.Yan, L. E.Brus, T. F. Heinz, J.Hone , and S.Ryu, Anomalous lattice vibrations of single- and fewlayer MoS2, ACS Nano4(4), 2695 (2010)
CrossRef
ADS
Google scholar
|
[69] |
Y.Hao, Y.Wang, L.Wang, Z. Ni, Z.Wang , R.Wang, C. K.Koo, Z.Shen, and J. T. L.Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small6(6), 195 (2010)
CrossRef
ADS
Google scholar
|
[70] |
H.Li, G.Lu, Y.Wang, Z. Yin, C.Cong , Q.He, L.Wang, F.Ding, T. Yu, and H.Zhang , Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2, Small9(9), 1974 (2013)
CrossRef
ADS
Google scholar
|
[71] |
C. M.Nolen, G.Denina, D.Teweldebrhan , B.Bhanu, and A. A. Balandin, High-throughput large-area automated identification and quality control of graphene and few-layer graphene films, ACS Nano5(5), 914 (2011)
CrossRef
ADS
Google scholar
|
[72] |
L.Gao, W.Ren, F.Li, and H. M. Cheng, Total color difference for rapid and accurate identification of graphene, ACS Nano2(2), 1625 (2008)
CrossRef
ADS
Google scholar
|
[73] |
Y. Y.Wang, R. X.Gao, Z. H.Ni, H. He, S. P.Guo , H. P.Yang, C. X.Cong, and T.Yu , Thickness identification of two-dimensional materials by optical imaging, Nanotechnology23(49), 495713 (2012)
CrossRef
ADS
Google scholar
|
[74] |
I.Jung, M.Pelton, R.Piner , D. A.Dikin, S.Stankovich, S.Watcharotone , M.Hausner, and R. S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets, Nano Lett. 7(7), 3569 (2007)
CrossRef
ADS
Google scholar
|
[75] |
C.Casiraghi, A.Hartschuh, E.Lidorikis , H.Qian, H.Harutyunyan, T.Gokus , K. S.Novoselov, and A. C. Ferrari, Rayleigh imaging of graphene and graphene layers, Nano Lett. 7(7), 2711 (2007)
CrossRef
ADS
Google scholar
|
[76] |
S.Roddaro, P.Pingue, V.Piazza , V.Pellegrini, and F.Beltram, The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2, Nano Lett. 7(7), 2707 (2007)
CrossRef
ADS
Google scholar
|
[77] |
H.Li, J. M. T. Wu, X.Huang , G.Lu, J.Yang, X.Lu, Q. H. Zhang, and H.Zhang , Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano7(7), 10344 (2013)
CrossRef
ADS
Google scholar
|
[78] |
J.Guttinger, C.Stampfer, S.Hellmuller , F.Molitor, T.Ihn, and K.Ensslin , Charge detection in graphene quantum dots, Appl. Phys. Lett.93(21), 212102 (2008)
CrossRef
ADS
Google scholar
|
[79] |
C.Stampfer, J.Guttinger, S.Hellmueller , F.Molitor, K.Ensslin, and T.Ihn , Energy gaps in etched graphene nanoribbons, Phys. Rev. Lett. 102(5), 056403 (2009)
CrossRef
ADS
Google scholar
|
[80] |
G. W.Deng, D.Wei, J. R.Johansson , M. L.Zhang, S. X.Li, H. O.Li, G. Cao, M.Xiao , T.Tu, G. C.Guo, H. W.Jiang, F. Nori, and G. P.Guo , Charge number dependence of the dephasing rates of a graphene double quantum dot in a circuit QED architecture, Phys. Rev. Lett. 115(12), 126804 (2015)
CrossRef
ADS
Google scholar
|
[81] |
L.Britnell, R. V.Gorbachev, R.Jalil , B. D.Belle, F.Schedin, A.Mishchenko , T.Georgiou, M. I.Katsnelson, L.Eaves , S. V.Morozov, N. M. R. Peres, J.Leist , A. K.Geim, K. S.Novoselov, and L. A.Ponomarenko , Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science
CrossRef
ADS
Google scholar
|
[82] |
G.Jo, M.Choe, S.Lee, W. Park, Y. H.Kahng , T.Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology23(11), 112001 (2012)
CrossRef
ADS
Google scholar
|
[83] |
H.Yang, J.Heo, S.Park, H. J. Song, D. H.Seo , K. E.Byun, P.Kim, I.Yoo,H. J. Chung, and K.Kim , Graphene barrister: A triode device with a gatecontrolled Schottky barrier, Science336(6085), 1140 (2012)
CrossRef
ADS
Google scholar
|
[84] |
W. J.Yu, Z.Li, H.Zhou, Y. Chen, Y.Wang , Y.Huang, and X.Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
CrossRef
ADS
Google scholar
|
[85] |
G. F.Schneider, V. E. Calado, H.Zandbergen , L. M. K.Vandersypen, and C. Dekker, Wedging Transfer of Nanostructures, Nano Lett. 10(10), 1912 (2010)
CrossRef
ADS
Google scholar
|
[86] |
P. J.Zomer, S. P.Dash, N.Tombros, B. J. van Wees, A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride, Appl. Phys. Lett. 99(23), 232104 (2011)
CrossRef
ADS
Google scholar
|
[87] |
R.Yang, X. Q.Zheng, Z. H.Wang, C. J. Miller, and P. X. L.Feng , Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing, J. Vac. Sci. Technol. B32(6), 061203 (2014)
CrossRef
ADS
Google scholar
|
[88] |
S.Tanaka, H.Goto, H.Tomori,Y. Ootuka, and K.Tsukagoshi , Effect of current annealing on electronic properties of multilayer graphene, J. Phys. Conf. Ser. 232(1), 012015 (2010)
CrossRef
ADS
Google scholar
|
[89] |
S.Hertel, F.Kisslinger, J.Jobst , D.Waldmann, M.Krieger, and H. B.Weber , Current annealing and electrical breakdown of epitaxial graphene, Appl. Phys. Lett. 98(21), 212109 (2011)
CrossRef
ADS
Google scholar
|
[90] |
Y. C.Lin, C. C.Lu, C. H.Yeh, C. H. Jin, K.Suenaga , and P. W.Chiu, Graphene annealing: How clean can it be? Nano Lett. 12(12), 414 (2012)
CrossRef
ADS
Google scholar
|
[91] |
W.Lu, Y.Zhang, Z.Zhu, J. Lai, C.Zhao , X.Liu, J.Liu, and D.Sun , Thin tungsten telluride layer preparation by thermal annealing, Nanotechnology27(41), 414006 (2016)
CrossRef
ADS
Google scholar
|
[92] |
H. Q.Zhao, X.Mao, D.Zhou, S. Feng, X.Shi , Y.Ma, X.Wei, and Y.Mao , Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling, Nanoscale8(8), 18995 (2016)
CrossRef
ADS
Google scholar
|
[93] |
X. X.Song, Z. Z.Zhang, J.You, D. Liu, H. O.Li , G.Cao, M.Xiao, and G. P.Guo , Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot, Sci. Rep. 5, 16113 (2015)
CrossRef
ADS
Google scholar
|
[94] |
X. X.Song, D.Liu, V.Mosallanejad , J.You, T. Y.Han, D. T.Chen, H. O. Li, G.Cao , M.Xiao, G. C.Guo, and G. P.Guo , A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2, Nanoscale7(7), 16867 (2015)
CrossRef
ADS
Google scholar
|
[95] |
K.Lee, G.Kulkarni, and Z. H.Zhong , Coulomb blockade in monolayer MoS2 single electron transistor, Nanoscale8(8), 7755 (2016)
CrossRef
ADS
Google scholar
|
[96] |
K.Wang, T.Taniguchi, K.Watanabe , and P.Kim, Engineering quantum confinement in semiconducting van der Waals heterostructure, arXiv: condmat/ 1610.02929
|
[97] |
H.Wang, L. L.Yu, Y. H.Lee, Y. M. Shi, A.Hsu , M. L.Chin, L. J.Li, M.Dubey, J. Kong, and T.Palacios , Integrated circuits based on bilayer MoS2 transistors, Nano Lett. 12(12), 4674 (2012)
CrossRef
ADS
Google scholar
|
[98] |
J. H.Kang, W.Liu, D.Sarkar, D. Jena, and K.Banerjee , Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors, Phys. Rev. X4(3), 031005 (2014)
CrossRef
ADS
Google scholar
|
[99] |
C. W. J.Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B44(4), 1646 (1991)
CrossRef
ADS
Google scholar
|
[100] |
Y.Meir, N. S.Wingreen, and P. A.Lee , Transport through a strongly interacting electron system: Theory of periodic conductance oscillations, Phys. Rev. Lett. 66(23), 3048 (1991)
CrossRef
ADS
Google scholar
|
[101] |
W.Liu, J. H.Kang, D.Sarkar, Y. Khatami, D.Jena , and K.Banerjee, Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors, Nano Lett. 13(5), 1983 (2013)
CrossRef
ADS
Google scholar
|
[102] |
S.Das, H. Y.Chen, A. V.Penumatcha , and J.Appenzeller , High performance multilayer MoS2 transistors with scandium contacts, Nano Lett. 13(1), 100 (2013)
CrossRef
ADS
Google scholar
|
[103] |
H.Liu, M. W.Si, Y. X.Deng, A. T. Neal, Y. C.Du , S.Najmaei, P. M.Ajayan, J.Lou , and P. D. D.Ye, Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers, ACS Nano8(8), 1031 (2014)
CrossRef
ADS
Google scholar
|
[104] |
F.Molitor, H.Knowles, S.Droscher , U.Gasser, T.Choi, P.Roulleau, J. Guttinger, A.Jacobsen , C.Stampfer, K.Ensslin, and T.Ihn , Observation of excited states in a graphene double quantum dot, Europhys. Lett. 89(6), 67005 (2010)
CrossRef
ADS
Google scholar
|
[105] |
X. L.Liu, D.Hug, and L. M. K.Vandersypen , Gatedefined graphene double quantum dot and excited state spectroscopy, Nano Lett. 10(10), 1623 (2010)
CrossRef
ADS
Google scholar
|
[106] |
A. W.Holleitner, C. E. Decker, H.Qin , K.Eberl, and R. H. Blick, Coherent coupling of two quantum dots embedded in an Aharonov-Bohm interferometer, Phys. Rev. Lett. 87(25), 256802 (2001)
CrossRef
ADS
Google scholar
|
[107] |
J. M.Elzerman, R.Hanson, L. H.Willems van Beveren, B.Witkamp , L. M. K.Vandersypen, andL. P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot, Nature430(6998), 431 (2004)
CrossRef
ADS
Google scholar
|
[108] |
C.Volk, C.Neumann, S.Kazarski , S.Fringes, S.Engels, F.Haupt , A.Muller, and C.Stampfer, Probing relaxation times in graphene quantum dots, Nat. Commun. 4, 1753 (2013)
CrossRef
ADS
Google scholar
|
[109] |
S.Amasha, K.MacLean, I. P.Radu , D. M.Zumbuhl,M. A.Kastner, M. P.Hanson , and A. C.Gossard , Electrical control of spin relaxation in a quantum dot, Phys. Rev. Lett. 100(4), 046803 (2008)
CrossRef
ADS
Google scholar
|
[110] |
G. W.Deng, D.Wei, S. X.Li, J. R. Johansson, W. C.Kong , H. O.Li, G.Cao, M.Xiao, G. C. Guo, F.Nori , H. W.Jiang, and G. P. Guo, Coupling two distant double quantum dots with a microwave resonator, Nano Lett. 15(10), 6620 (2015)
CrossRef
ADS
Google scholar
|
[111] |
Y.Yu, Y.Zhou, L.Wan, B. Wang, F.Xu , Y.Wei, and J.Wang, Photoinduced valley-polarized current of layered MoS2 by electric tuning, Nanotechnology27(18), 185202 (2016)
CrossRef
ADS
Google scholar
|
[112] |
A.Kormányos, V. Zólyomi, N. D.Drummond, and G.Burkard , Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides, Phys. Rev. X 4(1), 011034 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |