Order parameter analysis of synchronization transitions on star networks

Hong-Bin Chen, Yu-Ting Sun, Jian Gao, Can Xu, Zhi-Gang Zheng

PDF(1988 KB)
PDF(1988 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 120504. DOI: 10.1007/s11467-017-0651-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Order parameter analysis of synchronization transitions on star networks

Author information +
History +

Abstract

The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

Keywords

Kuramoto model / synchronization / order parameter / Ott–Antonsen ansatz / star network

Cite this article

Download citation ▾
Hong-Bin Chen, Yu-Ting Sun, Jian Gao, Can Xu, Zhi-Gang Zheng. Order parameter analysis of synchronization transitions on star networks. Front. Phys., 2017, 12(6): 120504 https://doi.org/10.1007/s11467-017-0651-4

References

[1]
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Science and Business Media, 2012
[2]
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef ADS Google scholar
[3]
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)
CrossRef ADS Google scholar
[4]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001
CrossRef ADS Google scholar
[5]
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)
CrossRef ADS Google scholar
[6]
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef ADS Google scholar
[7]
Z. Zheng, G. Hu, and B. Hu, Phase slips and phase synchronization of coupled oscillators, Phys. Rev. Lett. 81(24), 5318 (1998)
CrossRef ADS Google scholar
[8]
Z. Zheng, G. Hu, and B. Hu, Collective phase slips and phase synchronizations in coupled oscillator systems, Phys. Rev. E 62(1), 402 (2000)
CrossRef ADS Google scholar
[9]
D. A. Paley, N. E. Leonard, and R. Sepulchre, Oscillator models and collective motion: Splay state stabilization of self-propelled particles, in: Proc. 51st IEEE Conf. Decision Control, pp 3935–3940 (2005)
CrossRef ADS Google scholar
[10]
M. Silber, L. Fabiny, and K. Wiesenfeld, Stability results for in-phase and splay-phase states of solid-state laser arrays, J. Opt. Soc. Am. B 10(6), 1121 (1993)
CrossRef ADS Google scholar
[11]
S. H. Strogatz and R. E. Mirollo, Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers, Phys. Rev. E 47(1), 220 (1993)
CrossRef ADS Google scholar
[12]
L. Lü, C. Li, W. Wang, Y. Sun, Y. Wang, and A. Sun, Study on spatiotemporal chaos synchronization among complex networks with diverse structures, Nonlinear Dyn. 77(1–2), 145 (2014)
CrossRef ADS Google scholar
[13]
J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef ADS Google scholar
[14]
O. E. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109(16), 164101 (2012)
CrossRef ADS Google scholar
[15]
D. Topaj and A. Pikovsky, Reversibility vs. synchronization in oscillator lattices, Physica D 170(2), 118 (2002)
CrossRef ADS Google scholar
[16]
L. Zhou, C. Wang, Y. Lin, and H. He, Combinatorial synchronization of complex multiple networks with unknown parameters, Nonlinear Dyn. 79(1), 307 (2015)
CrossRef ADS Google scholar
[17]
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
[18]
Z. Zheng, Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems, Beijing: Higher Education Press, 2004 (in Chinese)
[19]
N. Yao and Z. Zheng, Chimera states in spatiotemporal systems: Theory and applications, Int. J. Mod. Phys. B 30(1), 163002 (2016)
CrossRef ADS Google scholar
[20]
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
CrossRef ADS Google scholar
[21]
S. Watanabe and S. H. Strogatz, Integrability of a globally coupled oscillator array, Phys. Rev. Lett. 70(16), 2391 (1993)
CrossRef ADS Google scholar
[22]
S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays, Physica D 74(3–4), 197 (1994)
CrossRef ADS Google scholar
[23]
J. Gao, C. Xu, Y. Sun, and Z. Zheng, Order parameter analysis for low-dimensional behaviors of coupled phase oscillators, Sci. Rep. 6, 30184 (2016)
CrossRef ADS Google scholar
[24]
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
CrossRef ADS Google scholar
[25]
I. Leyva, R. Sevilla-Escoboza, J. M. Buldu, I. Sendina-Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gomez, R. Jaimes-Reategui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
CrossRef ADS Google scholar
[26]
C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)
CrossRef ADS Google scholar
[27]
P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)
CrossRef ADS Google scholar
[28]
T. K. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)
CrossRef ADS Google scholar
[29]
P. Ji, T. K. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef ADS Google scholar
[30]
L. Zhang, J. Chen, B. Sun, Y. Tang, M. Wang, Y. Li, and S. Xue, Nonlinear dynamic evolution and control in a new scale-free networks modeling, Nonlinear Dyn. 76(2), 1569 (2014)
CrossRef ADS Google scholar
[31]
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldu, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
CrossRef ADS Google scholar
[32]
C. Wang, A. Pumir, N. B. Garnier, and Z. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)
CrossRef ADS Google scholar
[33]
A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)
CrossRef ADS Google scholar
[34]
O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcations in phase oscillator networks with a central element, Physica D 241(12), 1072 (2012)
CrossRef ADS Google scholar
[35]
S. J. S. Theesar, M. R. K. Ariffin, and S. Banerjee, Synchronization and a secure communication scheme using optical star network, Opt. Laser Technol. 54, 15 (2013)
CrossRef ADS Google scholar
[36]
V. Vlasov, A. Pikovsky, and E. E. N. Macau, Star-type oscillatory networks with generic Kuramoto-type coupling: A model for Japanese drums synchrony, Chaos 25(12), 123120 (2015)
CrossRef ADS Google scholar
[37]
C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)
CrossRef ADS Google scholar
[38]
C. Xu, H. Xiang, J. Gao, and Z. Zheng, Collective dynamics of identical phase oscillators with high-order coupling, Sci. Rep. 6, 31133 (2016)
CrossRef ADS Google scholar
[39]
X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
CrossRef ADS Google scholar
[40]
C. J. Goebel, Comment on “Constants of motion for superconductor arrays”, Physica D 80(1–2), 18 (1995)
CrossRef ADS Google scholar
[41]
S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos 19(4), 043104 (2009)
CrossRef ADS Google scholar
[42]
H. Sakaguchi and Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment, Prog. Theor. Phys. 76(3), 576 (1986)
CrossRef ADS Google scholar
[43]
S. A. Marvel and S. H. Strogatz, Invariant submain-fold for series arrays of Josephson junctions, Chaos 19(1), 013132 (2009)
CrossRef ADS Google scholar
[44]
F. Dorfler and F. Bullo, Exploring synchronization in complex oscillator networks, in: Proc. 51st IEEE Conf. Decision Control, pp 7157–7170 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1988 KB)

Accesses

Citations

Detail

Sections
Recommended

/