First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices

Fuming Xu, Zhizhou Yu, Zhirui Gong, Hao Jin

PDF(1297 KB)
PDF(1297 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127306. DOI: 10.1007/s11467-017-0650-5
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices

Author information +
History +

Abstract

Prompted by recent reports on 3×3 graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogendoped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect 3×3 superlattices of graphene and carbon nanotubes. Multiple nanostructures of 3×3 graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. The transport properties of 3×3 graphene and carbon nanotube superlattices are calculated utilizing the non-equilibrium Green’s function formalism combined with density functional theory. The transmission spectrum through the pristine and 3×3 armchair carbon nanotube heterostructure shows quantized behavior under certain circumstances.

Keywords

3×3 graphene superlattice / inter-valley scattering

Cite this article

Download citation ▾
Fuming Xu, Zhizhou Yu, Zhirui Gong, Hao Jin. First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices. Front. Phys., 2017, 12(4): 127306 https://doi.org/10.1007/s11467-017-0650-5

References

[1]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef ADS Google scholar
[2]
I. ŽutićJ. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, Graphene: Materials in the flatland, Rev. Mod. Phys. 83(3), 837 (2011)
CrossRef ADS Google scholar
[4]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef ADS Google scholar
[5]
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)
CrossRef ADS Google scholar
[6]
Y. Xing, J. Wang, and Q. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)
CrossRef ADS Google scholar
[7]
J. Li, B. Wang, F. Xu, Y. Wei, and J. Wang, Spindependent Seebeck effects in graphene-based molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
CrossRef ADS Google scholar
[8]
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6(3), 271 (2011)
CrossRef ADS Google scholar
[9]
L. F. Huang and Z. Zeng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. 7(3), 324 (2012)
CrossRef ADS Google scholar
[10]
A. F. Morpurgo and F. Guinea, Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene, Phys. Rev. Lett. 97(19), 196804 (2006)
CrossRef ADS Google scholar
[11]
E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97(14), 146805 (2006)
CrossRef ADS Google scholar
[12]
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef ADS Google scholar
[13]
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef ADS Google scholar
[14]
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
[15]
D. Gunlycke and C. T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106(13), 136806 (2011)
CrossRef ADS Google scholar
[16]
Y. Liu, J. Song, Y. Li, Y. Liu, and Q. Sun, Controllable valley polarization using graphene multiple topological line defects, Phys. Rev. B 87(19), 195445 (2013)
CrossRef ADS Google scholar
[17]
J. H. Chen, G. Autès, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O. V. Yazyev, S. G. Louie, and A. Zettl, Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering, Phys. Rev. B 89(12), 121407 (2014)
CrossRef ADS Google scholar
[18]
S. G. Cheng, J. Zhou, H. Jiang, and Q.-F. Sun, The valley filther efficiency of monolayer graphene and bilayer graphene line defect model, New J. Phys. 18, 103024 (2016)
CrossRef ADS Google scholar
[19]
Z. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
CrossRef ADS Google scholar
[20]
Z. Qiao, J. Jung, C. Lin, Y. Ren, A. H. MacDonald, and Q. Niu, Current partition at topological channel intersections, Phys. Rev. Lett. 112(20), 206601 (2014)
CrossRef ADS Google scholar
[21]
Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two dimensional materials: A review, Rep. Rrog. Phys. 79(6), 066501 (2016)
CrossRef ADS Google scholar
[22]
T. Fujita, M. B. A. Jalil, and S. G. Tan, Valley filter in strain engineered graphene, Appl. Phys. Lett. 97(4), 043508 (2010)
CrossRef ADS Google scholar
[23]
Z. Khatibi, H. Rostami, and R. Asgari, Valley polarized transport in a strained graphene based corbino disc, Phys. Rev. B 88(19), 195426 (2013)
CrossRef ADS Google scholar
[24]
F. Zhai, Y. Ma, and K. Chang, Valley beam splitter based on strained graphene, New J. Phys. 13(8), 083029 (2011)
CrossRef ADS Google scholar
[25]
Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
CrossRef ADS Google scholar
[26]
X. Chen, L. Zhang, and H. Guo, Valley caloritronics and its realization by graphene nanoribbons, Phys. Rev. B 92(15), 155427 (2015)
CrossRef ADS Google scholar
[27]
Z. Yu, F. Xu, and J. Wang, Valley seebeck effect in gate tunable zigzag graphene nanoribbons, Carbon 99, 451 (2016)
CrossRef ADS Google scholar
[28]
Y. Ren, X. Deng, Z. Qiao, C. Li, J. Jung, C. Zeng, Z. Zhang, and Q. Niu, Single-valley engineering in graphene superlattices, Phys. Rev. B 91(24), 245415 (2015)
CrossRef ADS Google scholar
[29]
K. H. Jin and S. H. Jhi, Proximity-induced giant spinorbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
CrossRef ADS Google scholar
[30]
J. Zhang, C. Triola, and E. Rossi, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
CrossRef ADS Google scholar
[31]
F. Xu, Z. Yu, Y. Ren, B. Wang, Y. Wei, and Z. Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with intervalley coupling, New J. Phys. 18(11), 113011 (2016)
CrossRef ADS Google scholar
[32]
D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett. 9(5), 1752 (2009)
CrossRef ADS Google scholar
[33]
R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutiérrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, and M. Terrones, Nitrogendoped graphene: Beyond single substitution and enhanced molecular sensing, Sci. Rep. 2, 586 (2012)
CrossRef ADS Google scholar
[34]
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
CrossRef ADS Google scholar
[35]
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through eletrothermal reactions with ammonia, Science 324(5928), 768 (2009)
CrossRef ADS Google scholar
[36]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[37]
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef ADS Google scholar
[38]
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[39]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[40]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[41]
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef ADS Google scholar
[42]
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
CrossRef ADS Google scholar
[43]
The chemical potentials of hydrogen, nitrogen and carbon are chosen as the binding energy per atom of the H2 and N2 molecules, and the cohesive energy per atom of a single graphene sheet, respectively.
[44]
T. Ando, Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74(3), 777 (2005)
CrossRef ADS Google scholar
[45]
J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79(2), 677 (2007)
CrossRef ADS Google scholar
[46]
C. T. White and T. N. Todorov, Quantum electronics. Nanotubes go ballistic, Nature 411(6838), 649 (2001)
CrossRef ADS Google scholar
[47]
W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Fabry-Perot interference in a nanotube electron waveguide, Nature 411(6838), 665 (2001)
CrossRef ADS Google scholar
[48]
G. A. Steele, G. Götz, and L. P. Kouwenhoven, Tunable few-electrodes double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes, Nat. Nanotechnol. 4(6), 363 (2009)
CrossRef ADS Google scholar
[49]
Z. Li, H. Qian, J. Wu, B. L. Gu, and W. Duan, Role of symmetry in the transport properties of graphene nanoribbons under bias, Phys. Rev. Lett. 100(20), 206802 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1297 KB)

Accesses

Citations

Detail

Sections
Recommended

/