First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices
Fuming Xu, Zhizhou Yu, Zhirui Gong, Hao Jin
First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices
Prompted by recent reports on graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogendoped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect superlattices of graphene and carbon nanotubes. Multiple nanostructures of graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. The transport properties of graphene and carbon nanotube superlattices are calculated utilizing the non-equilibrium Green’s function formalism combined with density functional theory. The transmission spectrum through the pristine and armchair carbon nanotube heterostructure shows quantized behavior under certain circumstances.
[1] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[2] |
I. ŽutićJ. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef
ADS
Google scholar
|
[3] |
K. S. Novoselov, Graphene: Materials in the flatland, Rev. Mod. Phys. 83(3), 837 (2011)
CrossRef
ADS
Google scholar
|
[4] |
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
CrossRef
ADS
Google scholar
|
[5] |
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)
CrossRef
ADS
Google scholar
|
[6] |
Y. Xing, J. Wang, and Q. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)
CrossRef
ADS
Google scholar
|
[7] |
J. Li, B. Wang, F. Xu, Y. Wei, and J. Wang, Spindependent Seebeck effects in graphene-based molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
CrossRef
ADS
Google scholar
|
[8] |
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6(3), 271 (2011)
CrossRef
ADS
Google scholar
|
[9] |
L. F. Huang and Z. Zeng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. 7(3), 324 (2012)
CrossRef
ADS
Google scholar
|
[10] |
A. F. Morpurgo and F. Guinea, Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene, Phys. Rev. Lett. 97(19), 196804 (2006)
CrossRef
ADS
Google scholar
|
[11] |
E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97(14), 146805 (2006)
CrossRef
ADS
Google scholar
|
[12] |
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef
ADS
Google scholar
|
[13] |
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef
ADS
Google scholar
|
[14] |
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
|
[15] |
D. Gunlycke and C. T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106(13), 136806 (2011)
CrossRef
ADS
Google scholar
|
[16] |
Y. Liu, J. Song, Y. Li, Y. Liu, and Q. Sun, Controllable valley polarization using graphene multiple topological line defects, Phys. Rev. B 87(19), 195445 (2013)
CrossRef
ADS
Google scholar
|
[17] |
J. H. Chen, G. Autès, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O. V. Yazyev, S. G. Louie, and A. Zettl, Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering, Phys. Rev. B 89(12), 121407 (2014)
CrossRef
ADS
Google scholar
|
[18] |
S. G. Cheng, J. Zhou, H. Jiang, and Q.-F. Sun, The valley filther efficiency of monolayer graphene and bilayer graphene line defect model, New J. Phys. 18, 103024 (2016)
CrossRef
ADS
Google scholar
|
[19] |
Z. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
CrossRef
ADS
Google scholar
|
[20] |
Z. Qiao, J. Jung, C. Lin, Y. Ren, A. H. MacDonald, and Q. Niu, Current partition at topological channel intersections, Phys. Rev. Lett. 112(20), 206601 (2014)
CrossRef
ADS
Google scholar
|
[21] |
Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two dimensional materials: A review, Rep. Rrog. Phys. 79(6), 066501 (2016)
CrossRef
ADS
Google scholar
|
[22] |
T. Fujita, M. B. A. Jalil, and S. G. Tan, Valley filter in strain engineered graphene, Appl. Phys. Lett. 97(4), 043508 (2010)
CrossRef
ADS
Google scholar
|
[23] |
Z. Khatibi, H. Rostami, and R. Asgari, Valley polarized transport in a strained graphene based corbino disc, Phys. Rev. B 88(19), 195426 (2013)
CrossRef
ADS
Google scholar
|
[24] |
F. Zhai, Y. Ma, and K. Chang, Valley beam splitter based on strained graphene, New J. Phys. 13(8), 083029 (2011)
CrossRef
ADS
Google scholar
|
[25] |
Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
CrossRef
ADS
Google scholar
|
[26] |
X. Chen, L. Zhang, and H. Guo, Valley caloritronics and its realization by graphene nanoribbons, Phys. Rev. B 92(15), 155427 (2015)
CrossRef
ADS
Google scholar
|
[27] |
Z. Yu, F. Xu, and J. Wang, Valley seebeck effect in gate tunable zigzag graphene nanoribbons, Carbon 99, 451 (2016)
CrossRef
ADS
Google scholar
|
[28] |
Y. Ren, X. Deng, Z. Qiao, C. Li, J. Jung, C. Zeng, Z. Zhang, and Q. Niu, Single-valley engineering in graphene superlattices, Phys. Rev. B 91(24), 245415 (2015)
CrossRef
ADS
Google scholar
|
[29] |
K. H. Jin and S. H. Jhi, Proximity-induced giant spinorbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
CrossRef
ADS
Google scholar
|
[30] |
J. Zhang, C. Triola, and E. Rossi, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
CrossRef
ADS
Google scholar
|
[31] |
F. Xu, Z. Yu, Y. Ren, B. Wang, Y. Wei, and Z. Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with intervalley coupling, New J. Phys. 18(11), 113011 (2016)
CrossRef
ADS
Google scholar
|
[32] |
D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett. 9(5), 1752 (2009)
CrossRef
ADS
Google scholar
|
[33] |
R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutiérrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, and M. Terrones, Nitrogendoped graphene: Beyond single substitution and enhanced molecular sensing, Sci. Rep. 2, 586 (2012)
CrossRef
ADS
Google scholar
|
[34] |
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
CrossRef
ADS
Google scholar
|
[35] |
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through eletrothermal reactions with ammonia, Science 324(5928), 768 (2009)
CrossRef
ADS
Google scholar
|
[36] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[37] |
G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
CrossRef
ADS
Google scholar
|
[38] |
G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[39] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[40] |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef
ADS
Google scholar
|
[41] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef
ADS
Google scholar
|
[42] |
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
CrossRef
ADS
Google scholar
|
[43] |
The chemical potentials of hydrogen, nitrogen and carbon are chosen as the binding energy per atom of the H2 and N2 molecules, and the cohesive energy per atom of a single graphene sheet, respectively.
|
[44] |
T. Ando, Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74(3), 777 (2005)
CrossRef
ADS
Google scholar
|
[45] |
J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79(2), 677 (2007)
CrossRef
ADS
Google scholar
|
[46] |
C. T. White and T. N. Todorov, Quantum electronics. Nanotubes go ballistic, Nature 411(6838), 649 (2001)
CrossRef
ADS
Google scholar
|
[47] |
W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Fabry-Perot interference in a nanotube electron waveguide, Nature 411(6838), 665 (2001)
CrossRef
ADS
Google scholar
|
[48] |
G. A. Steele, G. Götz, and L. P. Kouwenhoven, Tunable few-electrodes double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes, Nat. Nanotechnol. 4(6), 363 (2009)
CrossRef
ADS
Google scholar
|
[49] |
Z. Li, H. Qian, J. Wu, B. L. Gu, and W. Duan, Role of symmetry in the transport properties of graphene nanoribbons under bias, Phys. Rev. Lett. 100(20), 206802 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |