Graphene: Nanostructure engineering and applications
Tingting Zhang, Shuang Wu, Rong Yang, Guangyu Zhang
Graphene: Nanostructure engineering and applications
Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.
graphene nanoribbons (GNRs) / microfabrication / top-down / bottom-up / electronic transport / zigzag / mobility / edge state
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[2] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef
ADS
Google scholar
|
[3] |
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
|
[4] |
J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506(7488), 349 (2014)
CrossRef
ADS
Google scholar
|
[5] |
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
CrossRef
ADS
Google scholar
|
[6] |
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101(26), 267601 (2008)
CrossRef
ADS
Google scholar
|
[7] |
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef
ADS
Google scholar
|
[8] |
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5(5), 321 (2010)
CrossRef
ADS
Google scholar
|
[9] |
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458(7240), 872 (2009)
CrossRef
ADS
Google scholar
|
[10] |
J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, Graphene nanomesh, Nat. Nanotechnol. 5(3), 190 (2010)
CrossRef
ADS
Google scholar
|
[11] |
X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett. 10(7), 2454 (2010)
CrossRef
ADS
Google scholar
|
[12] |
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320(5874), 356 (2008)
CrossRef
ADS
Google scholar
|
[13] |
B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures, Nano Lett. 11(6), 2247 (2011)
CrossRef
ADS
Google scholar
|
[14] |
A. Sinitskii and J. M. Tour, Patterning graphene through the self-assembled templates: Toward periodic two-dimensional graphene nanostructures with semiconductor properties, J. Am. Chem. Soc. 132(42), 14730 (2010)
CrossRef
ADS
Google scholar
|
[15] |
L. Liu, Y. Zhang, W. Wang, C. Gu, X. Bai, and E. Wang, Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene, Adv. Mater. 23(10), 1246 (2011)
CrossRef
ADS
Google scholar
|
[16] |
M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan, Fabrication and characterization of largearea, semiconducting nanoperforated graphene materials, Nano Lett. 10(4), 1125 (2010)
CrossRef
ADS
Google scholar
|
[17] |
J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross, Sub- 10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography, Adv. Mater. 25(34), 4723 (2013)
CrossRef
ADS
Google scholar
|
[18] |
A. Sinitskii and J. M. Tour, Patterning graphene nanoribbons using copper oxide nanowires, Appl. Phys. Lett. 100(10), 103106 (2012)
CrossRef
ADS
Google scholar
|
[19] |
L. Liao, J. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics, Nano Lett. 10(5), 1917 (2010)
CrossRef
ADS
Google scholar
|
[20] |
L. Liao, J. Bai, Y. C. Lin, Y. Qu, Y. Huang, and X. Duan, High-performance top-gated graphenenanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics, Adv. Mater. 22(17), 1941 (2010)
CrossRef
ADS
Google scholar
|
[21] |
L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate,Nature 467(7313), 305 (2010)
CrossRef
ADS
Google scholar
|
[22] |
W. Xu, H. K. Seo, S. Y. Min, H. Cho, T. S. Lim, C. Y. Oh, Y. Lee, and T. W. Lee, Rapid fabrication of designable large-scale aligned graphene nanoribbons by electro-hydrodynamic nanowire lithography, Adv. Mater. 26(21), 3459 (2014)
CrossRef
ADS
Google scholar
|
[23] |
S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Macroscopic 10-terabit-persquare- inch arrays from block copolymers with lateral order, Science 323(5917), 1030 (2009)
CrossRef
ADS
Google scholar
|
[24] |
Z. Huo, C. K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li, and P. Yang, Self-organized ultrathin oxide nanocrystals, Nano Lett. 9(3), 1260 (2009)
CrossRef
ADS
Google scholar
|
[25] |
J. D. Holmes, K. P. Johnston, R. Christopher Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287(5457), 1471 (2000)
CrossRef
ADS
Google scholar
|
[26] |
C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc. 130(28), 8902 (2008)
CrossRef
ADS
Google scholar
|
[27] |
X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, J. Am. Chem. Soc. 130(28), 8900 (2008)
CrossRef
ADS
Google scholar
|
[28] |
J. W. Bai, X. F. Duan, and Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nano Lett. 9(5), 2083 (2009)
CrossRef
ADS
Google scholar
|
[29] |
T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)
CrossRef
ADS
Google scholar
|
[30] |
L. C. Campos, V. R. Manfrinato, J. D. Sanchez- Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
CrossRef
ADS
Google scholar
|
[31] |
S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, Crystallographic etching of few-layer graphene, Nano Lett. 8(7), 1912 (2008)
CrossRef
ADS
Google scholar
|
[32] |
L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. F. Kelly, B. I. Yakobson, and P. M. Ajayan, Controlled nanocutting of graphene, Nano Res. 1(2), 116 (2008)
CrossRef
ADS
Google scholar
|
[33] |
L. Ci, L. Song, D. Jariwala, A. L. ElÃas, W. Gao, M. Terrones, and P. M. Ajayan, Graphene shape control by multistage cutting and transfer, Adv. Mater. 21(44), 4487 (2009)
CrossRef
ADS
Google scholar
|
[34] |
R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, An anisotropic etching effect in the graphene Basal plane, Adv. Mater. 22(36), 4014 (2010)
CrossRef
ADS
Google scholar
|
[35] |
Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater. 23(27), 3061 (2011)
CrossRef
ADS
Google scholar
|
[36] |
G. Wang, S. Wu, T. Zhang, P. Chen, X. Lu, S. Wang, D. Wang, K. Watanabe, T. Taniguchi, D. Shi, R. Yang, and G. Zhang, Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching, Appl. Phys. Lett. 109(5), 053101 (2016)
CrossRef
ADS
Google scholar
|
[37] |
L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene, Appl. Phys. Lett. 93(9), 093107 (2008)
CrossRef
ADS
Google scholar
|
[38] |
G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, and H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir 26(9), 6164 (2010)
CrossRef
ADS
Google scholar
|
[39] |
K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography, Nat. Commun. 3, 1194 (2012)
CrossRef
ADS
Google scholar
|
[40] |
S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope, Appl. Phys. Lett. 94(8), 082107 (2009)
CrossRef
ADS
Google scholar
|
[41] |
L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotechnol. 3(7), 397 (2008)
CrossRef
ADS
Google scholar
|
[42] |
M. D. Fischbein and M. Drndić, Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett. 93(11), 113107 (2008)
CrossRef
ADS
Google scholar
|
[43] |
D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Precision cutting and patterning of graphene with helium ions, Nanotechnology 20(45), 455301 (2009)
CrossRef
ADS
Google scholar
|
[44] |
D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Neon ion beam lithography (NIBL), Nano Lett. 11(10), 4343 (2011)
CrossRef
ADS
Google scholar
|
[45] |
A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B 102(23), 4477 (1998)
CrossRef
ADS
Google scholar
|
[46] |
L. Jiao, L. Zhang, L. Ding, J. Liu, and H. Dai, Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes, Nano Res. 3(6), 387 (2010)
CrossRef
ADS
Google scholar
|
[47] |
L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133(27), 10394 (2011)
CrossRef
ADS
Google scholar
|
[48] |
X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Graphene nanoribbons with smooth edges behave as quantum wires, Nat. Nanotechnol. 6(9), 563 (2011)
CrossRef
ADS
Google scholar
|
[49] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef
ADS
Google scholar
|
[50] |
B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Spin qubits in graphene quantum dots,Nat. Phys. 3(3), 192 (2007)
|
[51] |
X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader, and K. Mullen, Two-dimensional graphene nanoribbons, J. Am. Chem. Soc. 130(13), 4216 (2008)
CrossRef
ADS
Google scholar
|
[52] |
A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, and K. Mullen, Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons, Nat. Chem. 6(2), 126 (2013)
CrossRef
ADS
Google scholar
|
[53] |
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
CrossRef
ADS
Google scholar
|
[54] |
P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mullen, and R. Fasel, On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531(7595), 489 (2016)
CrossRef
ADS
Google scholar
|
[55] |
S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Müllen, R. Fasel, and C. A. Pignedoli, Intraribbon heterojunction formation in ultranarrow graphene nanoribbons, ACS Nano 6(3), 2020 (2012)
CrossRef
ADS
Google scholar
|
[56] |
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Mullen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
CrossRef
ADS
Google scholar
|
[57] |
Y. C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 10(2), 156 (2015)
CrossRef
ADS
Google scholar
|
[58] |
P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, and R. Fasel, Electronic structure of atomically precise graphene nanoribbons, ACS Nano 6, 6930 (2012)
CrossRef
ADS
Google scholar
|
[59] |
Y.C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7(7), 6123 (2013)
CrossRef
ADS
Google scholar
|
[60] |
T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Large-scale solution synthesis of narrow graphene nanoribbons, Nat. Commun. 5, 3189 (2014)
CrossRef
ADS
Google scholar
|
[61] |
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
CrossRef
ADS
Google scholar
|
[62] |
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio- Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5(10), 727 (2010)
CrossRef
ADS
Google scholar
|
[63] |
Q. Huang, J. J. Kim, G. Ali, and S. O. Cho, Widthtunable graphene nanoribbons on a SiC substrate with a controlled step height, Adv. Mater. 25(8), 1144 (2013)
CrossRef
ADS
Google scholar
|
[64] |
M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14(11), 6080 (2014)
CrossRef
ADS
Google scholar
|
[65] |
K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, and N. Yokoyama, Selective graphene formation on Copper twin crystals,J. Am. Chem. Soc. 134(30), 12492 (2012)
CrossRef
ADS
Google scholar
|
[66] |
T. Kato and R. Hatakeyama, Site- and alignmentcontrolled growth of graphene nanoribbons from nickel nanobars, Nat. Nanotechnol. 7(10), 651 (2012)
CrossRef
ADS
Google scholar
|
[67] |
I. Martin-Fernandez, D. Wang, and Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication, Nano Lett. 12(12), 6175 (2012)
CrossRef
ADS
Google scholar
|
[68] |
H. Ago, I. Tanaka, Y. Ogawa, R. M. Yunus, M. Tsuji, and H. Hibino, Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films, ACS Nano 7(12), 10825 (2013)
CrossRef
ADS
Google scholar
|
[69] |
R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)
CrossRef
ADS
Google scholar
|
[70] |
X. Lu, W. Yang, S. Wang, S. Wu, P. Chen, J. Zhang, J. Zhao, J. Meng, G. Xie, D. Wang, G. Wang, T. T. Zhang, K. Watanabe, T. Taniguchi, R. Yang, D. Shi, and G. Zhang, Graphene nanoribbons epitaxy on boron nitride, Appl. Phys. Lett. 108(11), 113103 (2016)
CrossRef
ADS
Google scholar
|
[71] |
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65(7), 1920 (1996)
CrossRef
ADS
Google scholar
|
[72] |
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)
CrossRef
ADS
Google scholar
|
[73] |
L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73(23), 235411 (2006)
CrossRef
ADS
Google scholar
|
[74] |
M. Wimmer, A. R. Akhmerov, and F. Guinea, Robustness of edge states in graphene quantum dots, Phys. Rev. B 82(4), 045409 (2010)
CrossRef
ADS
Google scholar
|
[75] |
K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59(12), 8271 (1999)
CrossRef
ADS
Google scholar
|
[76] |
J. Fernández-Rossier and J. J. Palacios, Magnetism in graphene nanoislands, Phys. Rev. Lett. 99(17), 177204 (2007)
CrossRef
ADS
Google scholar
|
[77] |
K. Wakabayashi, S. Okada, R. Tomita, S. Fujimoto, and Y. Natsume, Edge states and flat bands of graphene nanoribbons with edge modification, J. Phys. Soc. Jpn. 79(3), 034706 (2010)
CrossRef
ADS
Google scholar
|
[78] |
M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73(4), 045432 (2006)
CrossRef
ADS
Google scholar
|
[79] |
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
CrossRef
ADS
Google scholar
|
[80] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef
ADS
Google scholar
|
[81] |
Z. Klusek, Z. Waqar, E. A. Denisov, T. N. Kompaniets, I. V. Makarenko, A. N. Titkov, and A. S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy, Appl. Surf. Sci. 161(3–4), 508 (2000)
CrossRef
ADS
Google scholar
|
[82] |
Y. Kobayashi, K.i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005)
CrossRef
ADS
Google scholar
|
[83] |
Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)
CrossRef
ADS
Google scholar
|
[84] |
K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)
CrossRef
ADS
Google scholar
|
[85] |
J. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391(6662), 59 (1998)
CrossRef
ADS
Google scholar
|
[86] |
G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514(7524), 608 (2014)
CrossRef
ADS
Google scholar
|
[87] |
J. Jung and A. H. MacDonald, Carrier density and magnetism in graphene zigzag nanoribbons, Phys. Rev. B 79(23), 235433 (2009)
CrossRef
ADS
Google scholar
|
[88] |
M. Golor, T. C. Lang, and S. Wessel, Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons, Phys. Rev. B 87(15), 155441 (2013)
CrossRef
ADS
Google scholar
|
[89] |
K. Wakabayashi and M. Sigrist, Zero-conductance resonances due to flux states in nanographite ribbon junctions, Phys. Rev. Lett. 84(15), 3390 (2000)
CrossRef
ADS
Google scholar
|
[90] |
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
|
[91] |
A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77(20), 205416 (2008)
CrossRef
ADS
Google scholar
|
[92] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[93] |
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
CrossRef
ADS
Google scholar
|
[94] |
C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69(3), 731 (1997)
CrossRef
ADS
Google scholar
|
[95] |
S. Adam, S. Cho, M. S. Fuhrer, and S. Das Sarma, Density Inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons, Phys. Rev. Lett. 101(4), 046404 (2008)
CrossRef
ADS
Google scholar
|
[96] |
F. Sols, F. Guinea, and A. H. Neto, Coulomb blockade in graphene nanoribbons, Phys. Rev. Lett. 99(16), 166803 (2007)
CrossRef
ADS
Google scholar
|
[97] |
M. Yamamoto, Y. Takane, and K. Wakabayashi, Nearly perfect single-channel conduction in disordered armchair nanoribbons, Phys. Rev. B 79(12), 125421 (2009)
CrossRef
ADS
Google scholar
|
[98] |
M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Phys. Rev. B 78(16), 161407 (2008)
CrossRef
ADS
Google scholar
|
[99] |
I. Martin and Y. M. Blanter, Transport in disordered graphene nanoribbons, Phys. Rev. B 79(23), 235132 (2009)
CrossRef
ADS
Google scholar
|
[100] |
H. Suzuura and T. Ando, Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice, Phys. Rev. Lett. 89(26), 266603 (2002)
CrossRef
ADS
Google scholar
|
[101] |
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
CrossRef
ADS
Google scholar
|
[102] |
K. Wakabayashi and T. Aoki, Electrical conductance of zigzag nanographite ribbons with locally applied gate voltage, Int. J. Mod. Phys. B 16(32), 4897 (2002)
CrossRef
ADS
Google scholar
|
[103] |
E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Phys. Rev. B 79(7), 075407 (2009)
CrossRef
ADS
Google scholar
|
[104] |
Z. Qiao, X. Li, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field, Phys. Rev. B 87(12), 125405 (2013)
CrossRef
ADS
Google scholar
|
[105] |
Z. Qiao, S. A. Yang, B. Wang, Y. Yao, and Q. Niu, Spinpolarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
CrossRef
ADS
Google scholar
|
[106] |
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. Macdonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
CrossRef
ADS
Google scholar
|
[107] |
N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Quantized conductance of a suspended graphene nanoconstriction, Nat. Phys. 7(9), 697 (2011)
|
[108] |
D. K. Ki and A. F. Morpurgo, Crossover from coulomb blockade to quantum Hall effect in suspended graphene nanoribbons, Phys. Rev. Lett. 108(26), 266601 (2012)
CrossRef
ADS
Google scholar
|
[109] |
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |