Graphene: Nanostructure engineering and applications

Tingting Zhang, Shuang Wu, Rong Yang, Guangyu Zhang

PDF(39327 KB)
PDF(39327 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 127206. DOI: 10.1007/s11467-017-0648-z
REVIEW ARTICLE
REVIEW ARTICLE

Graphene: Nanostructure engineering and applications

Author information +
History +

Abstract

Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.

Keywords

graphene nanoribbons (GNRs) / microfabrication / top-down / bottom-up / electronic transport / zigzag / mobility / edge state

Cite this article

Download citation ▾
Tingting Zhang, Shuang Wu, Rong Yang, Guangyu Zhang. Graphene: Nanostructure engineering and applications. Front. Phys., 2017, 12(1): 127206 https://doi.org/10.1007/s11467-017-0648-z

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[3]
M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
[4]
J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506(7488), 349 (2014)
CrossRef ADS Google scholar
[5]
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
CrossRef ADS Google scholar
[6]
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101(26), 267601 (2008)
CrossRef ADS Google scholar
[7]
M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
CrossRef ADS Google scholar
[8]
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5(5), 321 (2010)
CrossRef ADS Google scholar
[9]
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458(7240), 872 (2009)
CrossRef ADS Google scholar
[10]
J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, Graphene nanomesh, Nat. Nanotechnol. 5(3), 190 (2010)
CrossRef ADS Google scholar
[11]
X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography, Nano Lett. 10(7), 2454 (2010)
CrossRef ADS Google scholar
[12]
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320(5874), 356 (2008)
CrossRef ADS Google scholar
[13]
B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures, Nano Lett. 11(6), 2247 (2011)
CrossRef ADS Google scholar
[14]
A. Sinitskii and J. M. Tour, Patterning graphene through the self-assembled templates: Toward periodic two-dimensional graphene nanostructures with semiconductor properties, J. Am. Chem. Soc. 132(42), 14730 (2010)
CrossRef ADS Google scholar
[15]
L. Liu, Y. Zhang, W. Wang, C. Gu, X. Bai, and E. Wang, Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene, Adv. Mater. 23(10), 1246 (2011)
CrossRef ADS Google scholar
[16]
M. Kim, N. S. Safron, E. Han, M. S. Arnold, and P. Gopalan, Fabrication and characterization of largearea, semiconducting nanoperforated graphene materials, Nano Lett. 10(4), 1125 (2010)
CrossRef ADS Google scholar
[17]
J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross, Sub- 10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography, Adv. Mater. 25(34), 4723 (2013)
CrossRef ADS Google scholar
[18]
A. Sinitskii and J. M. Tour, Patterning graphene nanoribbons using copper oxide nanowires, Appl. Phys. Lett. 100(10), 103106 (2012)
CrossRef ADS Google scholar
[19]
L. Liao, J. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics, Nano Lett. 10(5), 1917 (2010)
CrossRef ADS Google scholar
[20]
L. Liao, J. Bai, Y. C. Lin, Y. Qu, Y. Huang, and X. Duan, High-performance top-gated graphenenanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics, Adv. Mater. 22(17), 1941 (2010)
CrossRef ADS Google scholar
[21]
L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate,Nature 467(7313), 305 (2010)
CrossRef ADS Google scholar
[22]
W. Xu, H. K. Seo, S. Y. Min, H. Cho, T. S. Lim, C. Y. Oh, Y. Lee, and T. W. Lee, Rapid fabrication of designable large-scale aligned graphene nanoribbons by electro-hydrodynamic nanowire lithography, Adv. Mater. 26(21), 3459 (2014)
CrossRef ADS Google scholar
[23]
S. Park, D. H. Lee, J. Xu, B. Kim, S. W. Hong, U. Jeong, T. Xu, and T. P. Russell, Macroscopic 10-terabit-persquare- inch arrays from block copolymers with lateral order, Science 323(5917), 1030 (2009)
CrossRef ADS Google scholar
[24]
Z. Huo, C. K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li, and P. Yang, Self-organized ultrathin oxide nanocrystals, Nano Lett. 9(3), 1260 (2009)
CrossRef ADS Google scholar
[25]
J. D. Holmes, K. P. Johnston, R. Christopher Doty, and B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science 287(5457), 1471 (2000)
CrossRef ADS Google scholar
[26]
C. Wang, Y. J. Hu, C. M. Lieber, and S. H. Sun, Ultrathin Au nanowires and their transport properties, J. Am. Chem. Soc. 130(28), 8902 (2008)
CrossRef ADS Google scholar
[27]
X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction, J. Am. Chem. Soc. 130(28), 8900 (2008)
CrossRef ADS Google scholar
[28]
J. W. Bai, X. F. Duan, and Y. Huang, Rational fabrication of graphene nanoribbons using a nanowire etch mask, Nano Lett. 9(5), 2083 (2009)
CrossRef ADS Google scholar
[29]
T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and M. I. Katsnelson, Resonant scattering by realistic impurities in graphene, Phys. Rev. Lett. 105(5), 056802 (2010)
CrossRef ADS Google scholar
[30]
L. C. Campos, V. R. Manfrinato, J. D. Sanchez- Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
CrossRef ADS Google scholar
[31]
S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson, Crystallographic etching of few-layer graphene, Nano Lett. 8(7), 1912 (2008)
CrossRef ADS Google scholar
[32]
L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K. F. Kelly, B. I. Yakobson, and P. M. Ajayan, Controlled nanocutting of graphene, Nano Res. 1(2), 116 (2008)
CrossRef ADS Google scholar
[33]
L. Ci, L. Song, D. Jariwala, A. L. ElÃas, W. Gao, M. Terrones, and P. M. Ajayan, Graphene shape control by multistage cutting and transfer, Adv. Mater. 21(44), 4487 (2009)
CrossRef ADS Google scholar
[34]
R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, An anisotropic etching effect in the graphene Basal plane, Adv. Mater. 22(36), 4014 (2010)
CrossRef ADS Google scholar
[35]
Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater. 23(27), 3061 (2011)
CrossRef ADS Google scholar
[36]
G. Wang, S. Wu, T. Zhang, P. Chen, X. Lu, S. Wang, D. Wang, K. Watanabe, T. Taniguchi, D. Shi, R. Yang, and G. Zhang, Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching, Appl. Phys. Lett. 109(5), 053101 (2016)
CrossRef ADS Google scholar
[37]
L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene, Appl. Phys. Lett. 93(9), 093107 (2008)
CrossRef ADS Google scholar
[38]
G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, and H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir 26(9), 6164 (2010)
CrossRef ADS Google scholar
[39]
K. Zhang, Q. Fu, N. Pan, X. Yu, J. Liu, Y. Luo, X. Wang, J. Yang, and J. Hou, Direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography, Nat. Commun. 3, 1194 (2012)
CrossRef ADS Google scholar
[40]
S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope, Appl. Phys. Lett. 94(8), 082107 (2009)
CrossRef ADS Google scholar
[41]
L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotechnol. 3(7), 397 (2008)
CrossRef ADS Google scholar
[42]
M. D. Fischbein and M. Drndić, Electron beam nanosculpting of suspended graphene sheets, Appl. Phys. Lett. 93(11), 113107 (2008)
CrossRef ADS Google scholar
[43]
D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Precision cutting and patterning of graphene with helium ions, Nanotechnology 20(45), 455301 (2009)
CrossRef ADS Google scholar
[44]
D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Neon ion beam lithography (NIBL), Nano Lett. 11(10), 4343 (2011)
CrossRef ADS Google scholar
[45]
A. Lerf, H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B 102(23), 4477 (1998)
CrossRef ADS Google scholar
[46]
L. Jiao, L. Zhang, L. Ding, J. Liu, and H. Dai, Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes, Nano Res. 3(6), 387 (2010)
CrossRef ADS Google scholar
[47]
L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties, J. Am. Chem. Soc. 133(27), 10394 (2011)
CrossRef ADS Google scholar
[48]
X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, Graphene nanoribbons with smooth edges behave as quantum wires, Nat. Nanotechnol. 6(9), 563 (2011)
CrossRef ADS Google scholar
[49]
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef ADS Google scholar
[50]
B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Spin qubits in graphene quantum dots,Nat. Phys. 3(3), 192 (2007)
[51]
X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader, and K. Mullen, Two-dimensional graphene nanoribbons, J. Am. Chem. Soc. 130(13), 4216 (2008)
CrossRef ADS Google scholar
[52]
A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A. Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. Koch, G. Fytas, O. Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, and K. Mullen, Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons, Nat. Chem. 6(2), 126 (2013)
CrossRef ADS Google scholar
[53]
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466(7305), 470 (2010)
CrossRef ADS Google scholar
[54]
P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Mullen, and R. Fasel, On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531(7595), 489 (2016)
CrossRef ADS Google scholar
[55]
S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Müllen, R. Fasel, and C. A. Pignedoli, Intraribbon heterojunction formation in ultranarrow graphene nanoribbons, ACS Nano 6(3), 2020 (2012)
CrossRef ADS Google scholar
[56]
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Mullen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
CrossRef ADS Google scholar
[57]
Y. C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions, Nat. Nanotechnol. 10(2), 156 (2015)
CrossRef ADS Google scholar
[58]
P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, and R. Fasel, Electronic structure of atomically precise graphene nanoribbons, ACS Nano 6, 6930 (2012)
CrossRef ADS Google scholar
[59]
Y.C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, and M. F. Crommie, Tuning the band gap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7(7), 6123 (2013)
CrossRef ADS Google scholar
[60]
T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii, Large-scale solution synthesis of narrow graphene nanoribbons, Nat. Commun. 5, 3189 (2014)
CrossRef ADS Google scholar
[61]
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
CrossRef ADS Google scholar
[62]
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio- Roy, B. Zhang, X. Wu, C. Berger, and W. A. de Heer, Scalable templated growth of graphene nanoribbons on SiC, Nat. Nanotechnol. 5(10), 727 (2010)
CrossRef ADS Google scholar
[63]
Q. Huang, J. J. Kim, G. Ali, and S. O. Cho, Widthtunable graphene nanoribbons on a SiC substrate with a controlled step height, Adv. Mater. 25(8), 1144 (2013)
CrossRef ADS Google scholar
[64]
M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, The bottom-up growth of edge specific graphene nanoribbons, Nano Lett. 14(11), 6080 (2014)
CrossRef ADS Google scholar
[65]
K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, and N. Yokoyama, Selective graphene formation on Copper twin crystals,J. Am. Chem. Soc. 134(30), 12492 (2012)
CrossRef ADS Google scholar
[66]
T. Kato and R. Hatakeyama, Site- and alignmentcontrolled growth of graphene nanoribbons from nickel nanobars, Nat. Nanotechnol. 7(10), 651 (2012)
CrossRef ADS Google scholar
[67]
I. Martin-Fernandez, D. Wang, and Y. Zhang, Direct growth of graphene nanoribbons for large-scale device fabrication, Nano Lett. 12(12), 6175 (2012)
CrossRef ADS Google scholar
[68]
H. Ago, I. Tanaka, Y. Ogawa, R. M. Yunus, M. Tsuji, and H. Hibino, Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films, ACS Nano 7(12), 10825 (2013)
CrossRef ADS Google scholar
[69]
R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, and M. S. Arnold, Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)
CrossRef ADS Google scholar
[70]
X. Lu, W. Yang, S. Wang, S. Wu, P. Chen, J. Zhang, J. Zhao, J. Meng, G. Xie, D. Wang, G. Wang, T. T. Zhang, K. Watanabe, T. Taniguchi, R. Yang, D. Shi, and G. Zhang, Graphene nanoribbons epitaxy on boron nitride, Appl. Phys. Lett. 108(11), 113103 (2016)
CrossRef ADS Google scholar
[71]
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65(7), 1920 (1996)
CrossRef ADS Google scholar
[72]
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)
CrossRef ADS Google scholar
[73]
L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73(23), 235411 (2006)
CrossRef ADS Google scholar
[74]
M. Wimmer, A. R. Akhmerov, and F. Guinea, Robustness of edge states in graphene quantum dots, Phys. Rev. B 82(4), 045409 (2010)
CrossRef ADS Google scholar
[75]
K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59(12), 8271 (1999)
CrossRef ADS Google scholar
[76]
J. Fernández-Rossier and J. J. Palacios, Magnetism in graphene nanoislands, Phys. Rev. Lett. 99(17), 177204 (2007)
CrossRef ADS Google scholar
[77]
K. Wakabayashi, S. Okada, R. Tomita, S. Fujimoto, and Y. Natsume, Edge states and flat bands of graphene nanoribbons with edge modification, J. Phys. Soc. Jpn. 79(3), 034706 (2010)
CrossRef ADS Google scholar
[78]
M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73(4), 045432 (2006)
CrossRef ADS Google scholar
[79]
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
CrossRef ADS Google scholar
[80]
Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
CrossRef ADS Google scholar
[81]
Z. Klusek, Z. Waqar, E. A. Denisov, T. N. Kompaniets, I. V. Makarenko, A. N. Titkov, and A. S. Bhatti, Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy, Appl. Surf. Sci. 161(3–4), 508 (2000)
CrossRef ADS Google scholar
[82]
Y. Kobayashi, K.i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005)
CrossRef ADS Google scholar
[83]
Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)
CrossRef ADS Google scholar
[84]
K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)
CrossRef ADS Google scholar
[85]
J. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391(6662), 59 (1998)
CrossRef ADS Google scholar
[86]
G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514(7524), 608 (2014)
CrossRef ADS Google scholar
[87]
J. Jung and A. H. MacDonald, Carrier density and magnetism in graphene zigzag nanoribbons, Phys. Rev. B 79(23), 235433 (2009)
CrossRef ADS Google scholar
[88]
M. Golor, T. C. Lang, and S. Wessel, Quantum Monte Carlo studies of edge magnetism in chiral graphene nanoribbons, Phys. Rev. B 87(15), 155441 (2013)
CrossRef ADS Google scholar
[89]
K. Wakabayashi and M. Sigrist, Zero-conductance resonances due to flux states in nanographite ribbon junctions, Phys. Rev. Lett. 84(15), 3390 (2000)
CrossRef ADS Google scholar
[90]
A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
[91]
A. R. Akhmerov, J. H. Bardarson, A. Rycerz, and C. W. J. Beenakker, Theory of the valley-valve effect in graphene nanoribbons, Phys. Rev. B 77(20), 205416 (2008)
CrossRef ADS Google scholar
[92]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef ADS Google scholar
[93]
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
CrossRef ADS Google scholar
[94]
C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69(3), 731 (1997)
CrossRef ADS Google scholar
[95]
S. Adam, S. Cho, M. S. Fuhrer, and S. Das Sarma, Density Inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons, Phys. Rev. Lett. 101(4), 046404 (2008)
CrossRef ADS Google scholar
[96]
F. Sols, F. Guinea, and A. H. Neto, Coulomb blockade in graphene nanoribbons, Phys. Rev. Lett. 99(16), 166803 (2007)
CrossRef ADS Google scholar
[97]
M. Yamamoto, Y. Takane, and K. Wakabayashi, Nearly perfect single-channel conduction in disordered armchair nanoribbons, Phys. Rev. B 79(12), 125421 (2009)
CrossRef ADS Google scholar
[98]
M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons, Phys. Rev. B 78(16), 161407 (2008)
CrossRef ADS Google scholar
[99]
I. Martin and Y. M. Blanter, Transport in disordered graphene nanoribbons, Phys. Rev. B 79(23), 235132 (2009)
CrossRef ADS Google scholar
[100]
H. Suzuura and T. Ando, Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice, Phys. Rev. Lett. 89(26), 266603 (2002)
CrossRef ADS Google scholar
[101]
K. Wakabayashi, Y. Takane, and M. Sigrist, Perfectly conducting channel and universality crossover in disordered graphene nanoribbons, Phys. Rev. Lett. 99(3), 036601 (2007)
CrossRef ADS Google scholar
[102]
K. Wakabayashi and T. Aoki, Electrical conductance of zigzag nanographite ribbons with locally applied gate voltage, Int. J. Mod. Phys. B 16(32), 4897 (2002)
CrossRef ADS Google scholar
[103]
E. R. Mucciolo, A. H. Castro Neto, and C. H. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Phys. Rev. B 79(7), 075407 (2009)
CrossRef ADS Google scholar
[104]
Z. Qiao, X. Li, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Topological phases in gated bilayer graphene: Effects of Rashba spin-orbit coupling and exchange field, Phys. Rev. B 87(12), 125405 (2013)
CrossRef ADS Google scholar
[105]
Z. Qiao, S. A. Yang, B. Wang, Y. Yao, and Q. Niu, Spinpolarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
CrossRef ADS Google scholar
[106]
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. Macdonald, and Q. Niu, Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator, Phys. Rev. Lett. 112(11), 116404 (2014)
CrossRef ADS Google scholar
[107]
N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Quantized conductance of a suspended graphene nanoconstriction, Nat. Phys. 7(9), 697 (2011)
[108]
D. K. Ki and A. F. Morpurgo, Crossover from coulomb blockade to quantum Hall effect in suspended graphene nanoribbons, Phys. Rev. Lett. 108(26), 266601 (2012)
CrossRef ADS Google scholar
[109]
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(39327 KB)

Accesses

Citations

Detail

Sections
Recommended

/