On the ground state energy of the inhomogeneous Bose gas
V. B. Bobrov, S. A. Trigger
On the ground state energy of the inhomogeneous Bose gas
Within the self-consistent Hartree–Fock approximation, an explicit in this approximation expression for the ground state energy of inhomogeneous Bose gas is derived as a functional of the inhomogeneous density of the Bose–Einstein condensate. The results obtained are based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose–Einstein condensate. This makes it possible to avoid the use of anomalous averages. The explicit form of the kinetic energy, which differs from one in the Gross–Pitaevski approach, is found. The obtained form of kinetic energy is valid beyond the Hartree–Fock approximation and can be applied for arbitrary strong interparticle interaction.
Bose condensation / elementary excitations / single-particle Green function / density-density Green function / thermodynamic energy
[1] |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose– Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
CrossRef
ADS
Google scholar
|
[2] |
E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose– Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
CrossRef
ADS
Google scholar
|
[3] |
L. P. Pitaevskii, Bose–Einstein condensation in magnetic traps: Introduction to the theory, Phys. Usp. 41(6), 569 (1998)
CrossRef
ADS
Google scholar
|
[4] |
E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20(3), 454 (1961)
CrossRef
ADS
Google scholar
|
[5] |
L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]
|
[6] |
L. P. Pitaevskii, Bose–Einstein condensates in a laser radiation field, Phys. Usp. 49(4), 333 (2006)
CrossRef
ADS
Google scholar
|
[7] |
E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61(4), 043602 (2000)
CrossRef
ADS
Google scholar
|
[8] |
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State, Oxford: Butterworth-Heinemann, 1980
|
[9] |
W. H. Bassichis and L. L. Foldy, Analysis of the Bogoliubov method applied to a simple Boson model, Phys. Rev. 133(4A), 935 (1964)
CrossRef
ADS
Google scholar
|
[10] |
H. Stolz, Theory of interacting bosons without anomalous propagators, Physica A 86(1), 111 (1977)
CrossRef
ADS
Google scholar
|
[11] |
C. H. Zhang and H. A. Fertig, Superfluidity without symmetry breaking: The time-dependent Hartree–Fock approximation for Bose-condensed condensates, Phys. Rev. A 74(2), 023613 (2006)
CrossRef
ADS
Google scholar
|
[12] |
P. Navez and K. Bongs, Gap and screening in Raman scattering of a Bose condensed gas, Europhys. Lett. 88(6), 60008 (2009)
CrossRef
ADS
Google scholar
|
[13] |
V. B. Bobrov, S. A. Trigger, and I. M. Yurin, Coexistence of “bogolons” and the single-particle excitation spectrum with a gap in the degenerate Bose gas, Phys. Lett. A 374(19–20), 1938 (2010)
CrossRef
ADS
Google scholar
|
[14] |
A. M. Ettouhami, Re-examining Bogoliubov’s theory of an interacting Bose gas, Prog. Theor. Phys. 127(3), 453 (2012)
CrossRef
ADS
Google scholar
|
[15] |
V. B. Bobrov and S. A. Trigger, Structure factor and distribution function of degenerate Bose gases without anomalous averages, J. Low Temp. Phys. 170(1–2), 31 (2013)
CrossRef
ADS
Google scholar
|
[16] |
V. B. Bobrov, S. A. Triger, and P. Schram, Sov. Phys. JETP 80, 853 (1995)
|
[17] |
V. B. Bobrov and S. A. Trigger, On the properties of systems with Bose–Einstein condensate in the Coulomb model of matter, Bull. Lebedev Phys. Inst. 42(1), 13 (2015)
CrossRef
ADS
Google scholar
|
[18] |
V. B. Bobrov, A. G. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41, 901 (2015)
CrossRef
ADS
Google scholar
|
[19] |
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
|
[20] |
N. N. Bogolubov and N. N. Jr Bogolubov, Introduction to Quantum Statistical Mechanics, New York: Gordon and Breach, 1992
|
[21] |
V. B. Bobrov, S. A. Trigger, and A. Zagorodny, Virial theorem, one-particle density matrix, and equilibrium condition in an external field, Phys. Rev. A 82(4), 044105 (2010)
CrossRef
ADS
Google scholar
|
[22] |
V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) (English transl.: L. D. Landau, Collected Papers, Oxford: Pergamon, 1965, p. 546)
|
[23] |
O. Penrose and L. Onsager, Bose–Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
CrossRef
ADS
Google scholar
|
[24] |
C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34(4), 694 (1962)
CrossRef
ADS
Google scholar
|
[25] |
V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, The off-diagonal long-range order and inhomogeneous Bose– Einstein condensate, Dokl. Phys. 60(4), 147 (2015)
CrossRef
ADS
Google scholar
|
[26] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
CrossRef
ADS
Google scholar
|
[27] |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef
ADS
Google scholar
|
[28] |
R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3), 689 (1989)
CrossRef
ADS
Google scholar
|
[29] |
N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947)
|
[30] |
V. B. Bobrov, A. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41(11), 901 (2015)
CrossRef
ADS
Google scholar
|
[31] |
N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen, F. Chevy, W. Krauth, and C. Salomon, Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas, Phys. Rev. Lett. 107(13), 135301 (2011)
CrossRef
ADS
Google scholar
|
[32] |
T. L. Ho and Q. Zhou, Chromatin remodelling during development, Nature 463(7280), 1057 (2010)
CrossRef
ADS
Google scholar
|
[33] |
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Oxford: Butterworth-Heinemann, 1980
|
/
〈 | 〉 |