On the ground state energy of the inhomogeneous Bose gas

V. B. Bobrov, S. A. Trigger

PDF(135 KB)
PDF(135 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 120501. DOI: 10.1007/s11467-017-0624-7
RESEARCH ARTICLE
RESEARCH ARTICLE

On the ground state energy of the inhomogeneous Bose gas

Author information +
History +

Abstract

Within the self-consistent Hartree–Fock approximation, an explicit in this approximation expression for the ground state energy of inhomogeneous Bose gas is derived as a functional of the inhomogeneous density of the Bose–Einstein condensate. The results obtained are based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose–Einstein condensate. This makes it possible to avoid the use of anomalous averages. The explicit form of the kinetic energy, which differs from one in the Gross–Pitaevski approach, is found. The obtained form of kinetic energy is valid beyond the Hartree–Fock approximation and can be applied for arbitrary strong interparticle interaction.

Keywords

Bose condensation / elementary excitations / single-particle Green function / density-density Green function / thermodynamic energy

Cite this article

Download citation ▾
V. B. Bobrov, S. A. Trigger. On the ground state energy of the inhomogeneous Bose gas. Front. Phys., 2017, 12(3): 120501 https://doi.org/10.1007/s11467-017-0624-7

References

[1]
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose– Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
CrossRef ADS Google scholar
[2]
E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose– Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
CrossRef ADS Google scholar
[3]
L. P. Pitaevskii, Bose–Einstein condensation in magnetic traps: Introduction to the theory, Phys. Usp. 41(6), 569 (1998)
CrossRef ADS Google scholar
[4]
E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20(3), 454 (1961)
CrossRef ADS Google scholar
[5]
L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]
[6]
L. P. Pitaevskii, Bose–Einstein condensates in a laser radiation field, Phys. Usp. 49(4), 333 (2006)
CrossRef ADS Google scholar
[7]
E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61(4), 043602 (2000)
CrossRef ADS Google scholar
[8]
E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State, Oxford: Butterworth-Heinemann, 1980
[9]
W. H. Bassichis and L. L. Foldy, Analysis of the Bogoliubov method applied to a simple Boson model, Phys. Rev. 133(4A), 935 (1964)
CrossRef ADS Google scholar
[10]
H. Stolz, Theory of interacting bosons without anomalous propagators, Physica A 86(1), 111 (1977)
CrossRef ADS Google scholar
[11]
C. H. Zhang and H. A. Fertig, Superfluidity without symmetry breaking: The time-dependent Hartree–Fock approximation for Bose-condensed condensates, Phys. Rev. A 74(2), 023613 (2006)
CrossRef ADS Google scholar
[12]
P. Navez and K. Bongs, Gap and screening in Raman scattering of a Bose condensed gas, Europhys. Lett. 88(6), 60008 (2009)
CrossRef ADS Google scholar
[13]
V. B. Bobrov, S. A. Trigger, and I. M. Yurin, Coexistence of “bogolons” and the single-particle excitation spectrum with a gap in the degenerate Bose gas, Phys. Lett. A 374(19–20), 1938 (2010)
CrossRef ADS Google scholar
[14]
A. M. Ettouhami, Re-examining Bogoliubov’s theory of an interacting Bose gas, Prog. Theor. Phys. 127(3), 453 (2012)
CrossRef ADS Google scholar
[15]
V. B. Bobrov and S. A. Trigger, Structure factor and distribution function of degenerate Bose gases without anomalous averages, J. Low Temp. Phys. 170(1–2), 31 (2013)
CrossRef ADS Google scholar
[16]
V. B. Bobrov, S. A. Triger, and P. Schram, Sov. Phys. JETP 80, 853 (1995)
[17]
V. B. Bobrov and S. A. Trigger, On the properties of systems with Bose–Einstein condensate in the Coulomb model of matter, Bull. Lebedev Phys. Inst. 42(1), 13 (2015)
CrossRef ADS Google scholar
[18]
V. B. Bobrov, A. G. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41, 901 (2015)
CrossRef ADS Google scholar
[19]
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
[20]
N. N. Bogolubov and N. N. Jr Bogolubov, Introduction to Quantum Statistical Mechanics, New York: Gordon and Breach, 1992
[21]
V. B. Bobrov, S. A. Trigger, and A. Zagorodny, Virial theorem, one-particle density matrix, and equilibrium condition in an external field, Phys. Rev. A 82(4), 044105 (2010)
CrossRef ADS Google scholar
[22]
V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) (English transl.: L. D. Landau, Collected Papers, Oxford: Pergamon, 1965, p. 546)
[23]
O. Penrose and L. Onsager, Bose–Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
CrossRef ADS Google scholar
[24]
C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34(4), 694 (1962)
CrossRef ADS Google scholar
[25]
V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, The off-diagonal long-range order and inhomogeneous Bose– Einstein condensate, Dokl. Phys. 60(4), 147 (2015)
CrossRef ADS Google scholar
[26]
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
CrossRef ADS Google scholar
[27]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
CrossRef ADS Google scholar
[28]
R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3), 689 (1989)
CrossRef ADS Google scholar
[29]
N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947)
[30]
V. B. Bobrov, A. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41(11), 901 (2015)
CrossRef ADS Google scholar
[31]
N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen, F. Chevy, W. Krauth, and C. Salomon, Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas, Phys. Rev. Lett. 107(13), 135301 (2011)
CrossRef ADS Google scholar
[32]
T. L. Ho and Q. Zhou, Chromatin remodelling during development, Nature 463(7280), 1057 (2010)
CrossRef ADS Google scholar
[33]
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Oxford: Butterworth-Heinemann, 1980

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/