Exponential distance distribution of connected neurons in simulations of two-dimensional in vitro neural network development

Zhi-Song Lv , Chen-Ping Zhu , Pei Nie , Jing Zhao , Hui-Jie Yang , Yan-Jun Wang , Chin-Kun Hu

Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128902

PDF (777KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128902 DOI: 10.1007/s11467-017-0602-0
RESEARCH ARTICLE

Exponential distance distribution of connected neurons in simulations of two-dimensional in vitro neural network development

Author information +
History +
PDF (777KB)

Abstract

The distribution of the geometric distances of connected neurons is a practical factor underlying neural networks in the brain. It can affect the brain’s dynamic properties at the ground level. Karbowski derived a power-law decay distribution that has not yet been verified by experiment. In this work, we check its validity using simulations with a phenomenological model. Based on the in vitro twodimensional development of neural networks in culture vessels by Ito, we match the synapse number saturation time to obtain suitable parameters for the development process, then determine the distribution of distances between connected neurons under such conditions. Our simulations obtain a clear exponential distribution instead of a power-law one, which indicates that Karbowski’s conclusion is invalid, at least for the case of in vitro neural network development in two-dimensional culture vessels.

Keywords

distance distribution / connected neurons / development / exponential / power-law / neural networks / complex systems

Cite this article

Download citation ▾
Zhi-Song Lv, Chen-Ping Zhu, Pei Nie, Jing Zhao, Hui-Jie Yang, Yan-Jun Wang, Chin-Kun Hu. Exponential distance distribution of connected neurons in simulations of two-dimensional in vitro neural network development. Front. Phys., 2017, 12(3): 128902 DOI:10.1007/s11467-017-0602-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. J. Chacron, L. Maler, and J. Bastian, Electroreceptor neuron dynamics shape information transmission, Nat. Neurosci. 8(5), 673 (2005)

[2]

L. Agnati, L. Santarossa, S. Genedani, E. Canela, G. Leo, R. Franco, A. Woods, C. Lluis, S. Ferré, and K. Fuxe, On the nested hierarchical organization of CNS: Basic characteristics of neuronal molecular networks, Comput. Neurosci. 3146, 24 (2004)

[3]

E. Bullmore and O. Sporns, Complex brain networks: Raph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10(3), 186 (2009)

[4]

C. L. Leveroni, M. Seidenberg, and A. R. Mayer, Neural systems underlying recognition of familiar and newly learned daces, J. Neurosci. 20(2), 878 (2000)

[5]

G. Shahaf and S. Marom, Learning in networks of cortical neurons, J. Neurosci. 21(22), 8782 (2001)

[6]

X. Liang, J. H. Wang, and Y. He, Human connectome: Structural and functional brain networks, Chin. Sci. Bull. 55(16), 1565 (2010)

[7]

P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J. P. Thiran, Mapping human whole-brain structural networks with diffusion MRI, PLoS One 2(7), e597 (2007)

[8]

Y. Y. Ahn, H. Jeong, and B. J. Kim, Wiring cost in the organization of a biological neuronal network, Physica A 367, 531 (2006)

[9]

R. Kötter, Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database, Neuroinformatics 2(2), 127 (2004)

[10]

D. Ito, H. Tamate, M. Nagayama, T. Uchida, S. N. Kudoh, and K. Gohara, Minimum neuron density for synchronized bursts in a rat cortical culture on multielectrode arrays, Neuroscience 171(1), 50 (2010)

[11]

D. Ito, T. Komatsu, and K. Gohara, Measurement of saturation processes in glutamatergic and GABAergic synapse densities during long-term development of cultured rat cortical networks, Brain Res. 1534, 22 (2013)

[12]

J. Karbowski, Optimal wiring principle and plateaus in the degree of separation for cortical neurons, Phys. Rev. Lett. 86(16), 3674 (2001)

[13]

M. Miller and A. Peters, Maturation of rat visual cortex (II): A combined Golgi-electron microscope study of pyramidal neurons, J. Comparative Neurology 203(4), 555 (1981)

[14]

B. Hayes and A. Roberts, Synaptic junction development in the spinal cord of an Amphibian Embryo: An electron microscope study, Z. Zellforsch. 137, 251 (1973)

[15]

C. G. Dotti, C. A. Sullivan, and G. A. Banker, The establishment of polarity by hippocampal neurons in culture, J. Neurosci. 8(4), 1454 (1988)

[16]

M. Kaiser, C. C. Hilgetag, and A. van Ooyen, A simple rule for axon outgrowth and synaptic competition generates realistic connection lengths and filling fractions, Cereb. Cortex 19(12), 3001 (2009)

[17]

M. Ercsey-Ravasz, N. T. Markov, C. Lamy, D. C. Van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy, A predictive network model of cerebral cortical connectivity based on a distance rule, Neuron 80(1), 184 (2013)

[18]

M. Kaiser and C. C. Hilgetag, Nonoptimal component placement, but short processing paths, due to longdistance projections in neural systems, PLOS Comput. Biol. 2(7), e95 (2006)

[19]

D. S. Bassett and E. Bullmore, Small-world brain networks, Neuroscientist 12(6), 512 (2006)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (777KB)

901

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/