Thermal spin transfer torque in Fe|Ag|YIG multilayers

Hui-Min Tang, Xing-Tao Jia, Shi-Zhuo Wang

PDF(781 KB)
PDF(781 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 128501. DOI: 10.1007/s11467-016-0649-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermal spin transfer torque in Fe|Ag|YIG multilayers

Author information +
History +

Abstract

We investigated the thermal spin transfer effect in FM|NM|YIG multilayers using the first principles scattering theory. At room temperature, the spin Seebeck torque TSSE~1.0 μJ/(K·m2) in an Ag|Fe|Ag|YIG multilayer, which is around 40% larger than that estimated from mixing conductance. The quantum effects such as interlayer exchange coupling between FM and YIG could be responsible for the enhancements. Based on the LLG equation, we predict that a temperature bias of ~10 K can reverse the magnetic configurations, circularly, in a multilayer at room temperature.

Keywords

spin Seebeck torque / spin transfer torque / YIG

Cite this article

Download citation ▾
Hui-Min Tang, Xing-Tao Jia, Shi-Zhuo Wang. Thermal spin transfer torque in Fe|Ag|YIG multilayers. Front. Phys., 2017, 12(3): 128501 https://doi.org/10.1007/s11467-016-0649-3

References

[1]
G. E. W.Bauer, E.Saitoh, and B. J.van Wees, Spin caloritronics, Nat. Mater. 11(5), 391 (2012)
CrossRef ADS Google scholar
[2]
M.Hatami, G. E. W.Bauer, Q.Zhang, and P. J.Kelly, Thermal spin-transfer torque in magnetoelectronic devices, Phys. Rev. Lett. 99(6), 066603 (2007)
CrossRef ADS Google scholar
[3]
H.Yu, S.Granville, D. P.Yu, and J. Ph.Ansermet, Evidence for thermal spin-transfer torque, Phys. Rev. Lett. 104(14), 146601 (2010)
CrossRef ADS Google scholar
[4]
M.Hatami, G. E. W.Bauer, Q.Zhang, and P. J.Kelly, Thermoelectric effects in magnetic nanostructures, Phys. Rev. B79(17), 174426 (2009)
CrossRef ADS Google scholar
[5]
J.Xiao, G. E. W.Bauer, K. C.Uchida, E.Saitoh, and S.Maekawa, Theory of magnon-driven spin Seebeck effect, Phys. Rev. B81(21), 214418 (2010)
CrossRef ADS Google scholar
[6]
Z.Yuan, S.Wang, and K.Xia, Thermal spin-transfer torques on magnetic domain walls, Solid State Commun. 150(11–12), 548 (2010)
CrossRef ADS Google scholar
[7]
A. A.Kovalev and Y.Tserkovnyak, Thermoelectric spin transfer in textured magnets, Phys. Rev. B80(10), 100408 (2009)
CrossRef ADS Google scholar
[8]
G. E. W.Bauer, S.Bretzel, A.Brataas, and Y.Tserkovnyak, Nanoscale magnetic heat pumps and engines, Phys. Rev. B81(2), 024427 (2010)
CrossRef ADS Google scholar
[9]
A. A.Kovalev and Y.Tserkovnyak, Magnetocaloritronic nanomachines, Solid State Commun. 150(11–12), 500 (2010)
CrossRef ADS Google scholar
[10]
X.Jia, K.Xia, and G. E. W.Bauer, Thermal spin transfer in Fe-MgO-Fe tunnel junctions, Phys. Rev. Lett. 107(17), 176603 (2011)
CrossRef ADS Google scholar
[11]
X.Jia and K.Xia, Thermal electric effects in Fe-GaAs- Fe tunnel junctions, AIP Adv. 2(4), 041411 (2012)
CrossRef ADS Google scholar
[12]
S. Z.Wang, K.Xia, and G. E. W.Bauer, Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions, Phys. Rev. B90(22), 224406 (2014)
CrossRef ADS Google scholar
[13]
X.Jia and K.Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys.9(6), 768 (2014)
CrossRef ADS Google scholar
[14]
J. C.Slonczewski, Initiation of spin-transfer torque by thermal transport from magnons, Phys. Rev. B82(5), 054403 (2010)
CrossRef ADS Google scholar
[15]
E.Padrón-Hernández, A.Azevedo, and S. M.Rezende, Amplification of spin waves by thermal spin-transfer torque, Phys. Rev. Lett.107(19), 197203 (2011)
CrossRef ADS Google scholar
[16]
M. B.Jungfleisch, T.An, K.Ando, Y.Kajiwara, K.Uchida, V. I.Vasyuchka, A. V.Chumak, A. A.Serga, E.Saitoh, and B.Hillebrands, Heat-induced damping modification in yttrium iron garnet/platinum heterostructures, Appl. Phys. Lett.102(6), 062417 (2013)
CrossRef ADS Google scholar
[17]
L.Lu, Y.Sun, M.Jantz, and M.Wu, Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer, Phys. Rev. Lett.108(25), 257202 (2012)
CrossRef ADS Google scholar
[18]
S. A.Bender and Y.Tserkovnyak, Thermally driven spin torques in layered magnetic insulators, Phys. Rev. B93(6), 064418 (2016)
CrossRef ADS Google scholar
[19]
X.Jia, S.Wang, and M. H.Qin, Enhanced thermal spin transfer in MgO-based double-barrier tunnel junctions, New J. Phys.18(6), 063012 (2016)
CrossRef ADS Google scholar
[20]
M.Weiler, M.Althammer, M.Schreier, J.Lotze, M.Pernpeintner, S.Meyer, H.Huebl, R.Gross, A.Kamra, J.Xiao, Y. T.Chen, H.Jiao, G. E. W.Bauer, and S. T. B.Goennenwein, Experimental test of the spin mixing interface conductivity concept, Phys. Rev. Lett.111(17), 176601 (2013)
CrossRef ADS Google scholar
[21]
A.Pushp, T.Phung, C. T.Rettner, B.Hughes, S.Yang, and S. S. P.Parkin, Giant thermal spin-torque assisted magnetic tunnel junction switching, Proc. Natl. Acad. Sci. USA112(21), 6585 (2015)
CrossRef ADS Google scholar
[22]
P.Ogrodnik, G. E. W.Bauer, and K.Xia, Thermally induced dynamics in ultrathin magnetic tunnel junctions, Phys. Rev. B88(2), 024406 (2013)
CrossRef ADS Google scholar
[23]
D.Tian, Y.Li, D.Qu, X.Jin, and C. L.Chien, Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG, Appl. Phys. Lett.106(21), 212407 (2015)
CrossRef ADS Google scholar
[24]
Y.Kajiwara, K.Harii, S.Takahashi, J.Ohe, K.Uchida, M.Mizuguchi, H.Umezawa, H.Kawai, K.Ando, K.Takanashi, S.Maekawa, and E.Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator, Nature464(7286), 262 (2010)
CrossRef ADS Google scholar
[25]
K.Uchida, J.Xiao, H.Adachi, J.Ohe, S.Takahashi, J.Ieda, T.Ota, Y.Kajiwara, H.Umezawa, H.Kawai, G. E. W.Bauer, S.Maekawa, and E.Saitoh, Spin Seebeck insulator, Nat. Mater.9(11), 894 (2010)
CrossRef ADS Google scholar
[26]
C. W.Sandweg, Y.Kajiwara, A. V.Chumak, A. A.Serga, V. I.Vasyuchka, M. B.Jungfleisch, E.Saitoh, and B.Hillebrands, Spin pumping by parametrically excited exchange magnons, Phys. Rev. Lett.106(21), 216601 (2011)
CrossRef ADS Google scholar
[27]
B.Heinrich, C.Burrowes, E.Montoya, B.Kardasz, E.Girt, Y. Y.Song, Y.Sun, and M. Z.Wu, Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces, Phys. Rev. Lett.107(6), 066604 (2011)
CrossRef ADS Google scholar
[28]
H.Kurebayashi, O.Dzyapko, V. E.Demidov, D.Fang, A. J.Ferguson, and S. O.Demokritov, Controlled enhancement of spin-current emission by three-magnon splitting, Nat. Mater.10(9), 660 (2011)
CrossRef ADS Google scholar
[29]
E.Padrón-Hernández, A.Azevedo, and S. M.Rezende, Amplification of spin waves by thermal spin-transfer torque, Phys. Rev. Lett.107(19), 197203 (2011)
CrossRef ADS Google scholar
[30]
V.Castel, N.Vlietstra, J.Ben Youssef, and B. J.van Wees, Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system, Appl. Phys. Lett.101(13), 132414 (2012)
CrossRef ADS Google scholar
[31]
S. Y.Huang, X.Fan, D.Qu, Y. P.Chen, W. G.Wang, J.Wu, T. Y.Chen, J. Q.Xiao, and C. L.Chien, Transport magnetic proximity effects in platinum, Phys. Rev. Lett. 109(10), 107204 (2012)
CrossRef ADS Google scholar
[32]
H.Nakayama, M.Althammer, Y. T.Chen, K.Uchida, Y.Kajiwara, D.Kikuchi, T.Ohtani, S.Geprägs, M.Opel, S.Takahashi, R.Gross, G. E. W.Bauer, S. T. B.Goennenwein, and E.Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect, Phys. Rev. Lett. 110(20), 206601 (2013)
CrossRef ADS Google scholar
[33]
Y.Sun, Y. Y.Song, H.Chang, M.Kabatek, M.Jantz, W.Schneider, M.Wu, H.Schultheiss, and A.Hoffmann, Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films, Appl. Phys. Lett. 101(15), 152405 (2012)
CrossRef ADS Google scholar
[34]
O.d’Allivy Kelly, A.Anane, R.Bernard, J.Ben Youssef, C.Hahn, A. H.Molpeceres, C.Carretero, E.Jacquet, C.Deranlot, P.Bortolotti, R.Lebourgeois, J. C.Mage, G.de Loubens, O.Klein, V.Cros, and A.Fert, Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system, Appl. Phys. Lett. 103(8), 082408 (2013)
CrossRef ADS Google scholar
[35]
T.Liu, H.Chang, V.Vlaminck, Y.Sun, M.Kabatek, A.Hoffmann, L.Deng, and M.Wu, Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films, J. Appl. Phys. 115(17), 17A501 (2014)
[36]
H. L.Wang, C. H.Du, Y.Pu, R.Adur, P. C.Hammel, and F. Y.Yang, Scaling of spin hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/Metal spin pumping, Phys. Rev. Lett. 112(19), 197201 (2014)
CrossRef ADS Google scholar
[37]
H. C.Chang, P.Li, W.Zhang, T.Liu, A.Hoffmann, L. J.Deng, and M. Z.Wu, Nanometer-thick yttrium iron garnet films with extremely low damping, IEEE Magn. Lett. 5, 1 (2014)
CrossRef ADS Google scholar
[38]
J. Z.Sun, Spin-current interaction with a monodomain magnetic body: A model study, Phys. Rev. B62(1), 570 (2000)
CrossRef ADS Google scholar
[39]
J.Zhang, M.Bachman, M.Czerner, and C.Heiliger, Thermal transport and nonequilibrium temperature drop across a magnetic tunnel junction, Phys. Rev. Lett. 115(3), 037203 (2015)
CrossRef ADS Google scholar
[40]
A.Brataas, Y.Tserkovnyak, and G. E. W.Bauer, Magnetization dissipation in ferromagnets from scattering theory, Phys. Rev. B84(5), 054416 (2011)
CrossRef ADS Google scholar
[41]
Y.Tserkovnyak, A.Brataas, and G. E. W.Bauer, Spin pumping and magnetization dynamics in metallic multilayers, Phys. Rev. B66(22), 224403 (2002)
CrossRef ADS Google scholar
[42]
Y.Tserkovnyak, A.Brataas, and G. E. W.Bauer, Enhanced Gilbert damping in thin ferromagnetic films, Phys. Rev. Lett. 88(11), 117601 (2002)
CrossRef ADS Google scholar
[43]
O.Gunnarsson, O.Jepsen, and O. K.Andersen, Selfconsistent impurity calculations in the atomic-spheres approximation, Phys. Rev. B27(12), 7144 (1983)
CrossRef ADS Google scholar
[44]
O. K.Andersen and O.Jepsen, Explicit, first-principles tight-binding theory, Phys. Rev. Lett. 53(27), 2571 (1984)
CrossRef ADS Google scholar
[45]
O.Jepsen, O. K.Andersen, and D.Glötzel, Highlights of Condensed Matter Theory, Amsterdam: North- Holland, 1985
[46]
S.Wang, Y.Xu, and K.Xia, First-principles study of spin-transfer torques in layered systems with noncollinear magnetization, Phys. Rev. B77(18), 184430 (2008)
CrossRef ADS Google scholar
[47]
X.Jia, K.Liu, K.Xia, and G. E. W.Bauer, Spin transfer torque on magnetic insulators, EPL96(1), 17005 (2011)
CrossRef ADS Google scholar
[48]
K. M. D.Hals, A.Brataas, and Y.Tserkovnyak, Scattering theory of charge-current induced magnetization dynamics, EPL90(4), 47002 (2010)
CrossRef ADS Google scholar
[49]
P.Bruno and C.Chappert, Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer, Phys. Rev. Lett. 67(12), 1602 (1991)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(781 KB)

Accesses

Citations

Detail

Sections
Recommended

/