Low conductance of nickel atomic junctions in hydrogen atmosphere

Shuaishuai Li, Yi-Qun Xie, Yibin Hu

PDF(2278 KB)
PDF(2278 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127305. DOI: 10.1007/s11467-016-0647-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Low conductance of nickel atomic junctions in hydrogen atmosphere

Author information +
History +

Abstract

The low conductance of nickel atomic junctions in the hydrogen environment is studied using the nonequilibrium Green’s function theory combined with first-principles calculations. The Ni junction bridged by a H2 molecule has a conductance of approximately 0.7 G0. This conductance is contributed by the anti-bonding state of the H2 molecule, which forms a bonding state with the 3d orbitals of the nearby Ni atoms. In contrast, the Ni junction bridged by the two single H atoms has a conductance of approximately 1 G0, which is weakly spin-polarized. The spin-up channels were found to contribute mostly to the conductance at a small junction gap, while the spin-down channels play a dominant role at a larger junction gap.

Keywords

atomic junction / conductance / nickel / hydrogen

Cite this article

Download citation ▾
Shuaishuai Li, Yi-Qun Xie, Yibin Hu. Low conductance of nickel atomic junctions in hydrogen atmosphere. Front. Phys., 2017, 12(4): 127305 https://doi.org/10.1007/s11467-016-0647-5

References

[1]
H. Ohnishi, Y. Kondo, and K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms, Nature 395(6704), 780 (1998)
CrossRef ADS Google scholar
[2]
H. S. Sim, H. W. Lee, and K. J. Chang, Even-odd behavior of conductance in monatomic sodium wires, Phys. Rev. Lett. 87(9), 096803 (2001)
CrossRef ADS Google scholar
[3]
V. Rodrigues, J. Bettini, P. C. Silva, and D. Ugarte, Evidence for spontaneous spin-polarized transport in magnetic nanowires, Phys. Rev. Lett. 91(9), 096801 (2003)
CrossRef ADS Google scholar
[4]
C. Untiedt, D. M. T. Dekker, D. Djukic, and J. M. van Ruitenbeek, Absence of magnetically induced fractional quantization in atomic contacts, Phys. Rev. B 69(8), 081401(R) (2004)
[5]
Y. J. Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and R. M. Nieminen, Electron transport through monovalent atomic wires, Phys. Rev. B 69(12), 125409 (2004)
CrossRef ADS Google scholar
[6]
L. de la Vega, A. Martín-Rodero, A. L. Yeyati, and A. Saúl, Different wavelength oscillations in the conductance of 5 d metal atomic chains, Phys. Rev. B 70(11), 113107 (2004)
CrossRef ADS Google scholar
[7]
M. Strange, K. S. Thygesen, and K. W. Jacobsen, Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations, Phys. Rev. B 73(12), 125424 (2006)
CrossRef ADS Google scholar
[8]
S. Csonka, A. Halbritter, and G. Mihály, Pulling gold nanowires with a hydrogen clamp: Strong interactions of hydrogen molecules with gold nanojunctions, Phys. Rev. B 73(7), 075405 (2006)
CrossRef ADS Google scholar
[9]
S. Kaneko, J. Zhang, J. Zhao, and M. Kiguchi, Electronic conductance of platinum atomic junction in a nitrogen atmosphere, J. Phys. Chem. C 7(19), 9903 (2013)
CrossRef ADS Google scholar
[10]
T. Konishi, M. Kiguchi, and K. Murakoshi, Electrical conductance of Rh atomic junctions under electrochemical potential control, Phys. Rev. B 81(12), 125422 (2010)
CrossRef ADS Google scholar
[11]
F. Q. Xie, F. Huser, F. Pauly, Ch. Obermair, G. Schon, and Th. Schimmel, Conductance of atomic-scale Pb junctions in an electrochemical environment, Phys. Rev. B 82(7), 075417 (2010)
CrossRef ADS Google scholar
[12]
T. Nakazumi and M. Kiguchi, Formation of Co atomic wire in hydrogen atmosphere, J. Phys. Chem. Lett. 1(6), 923 (2010)
CrossRef ADS Google scholar
[13]
K. S. Thygesen and K. W. Jacobsen, Conduction mechanism in a molecular hydrogen junction, Phys. Rev. Lett. 94(3), 036807 (2005)
CrossRef ADS Google scholar
[14]
M. Kiguchi, R. Stadler, I. S. Kristensen, D. Djukic, and J. M. van Ruitenbeek, Evidence for a single hydrogen molecule connected by an atomic chain, Phys. Rev. Lett. 98(14), 146802 (2007)
CrossRef ADS Google scholar
[15]
R. Matsushita, S. Kaneko, T. Nakazumi, and M. Kiguchi, Effect of metal-molecule junction on electronvibration interaction in single hydrogen molecule junction, Phys. Rev. B 84(24), 245412 (2011)
CrossRef ADS Google scholar
[16]
C. Motta, G. Fratesi, and M. I. Trioni, Conductance calculation of hydrogen molecular junctions between Cu electrodes, Phys. Rev. B 87(7), 075415 (2013)
CrossRef ADS Google scholar
[17]
W. H. A. Thijssen, M. Strange, J. M. J. Aan de Brugh, and J. M. van Ruitenbeek, Formation and properties of metal-oxygen atomic chains, New J. Phys. 10(3), 033005 (2008)
CrossRef ADS Google scholar
[18]
F. Tavazza, D. T. Smith, L. E. Levine, J. R. Pratt, and A. M. Chaka, Electron transport in gold nanowires: Stable 1-, 2- and 3-dimensional atomic structures and noninteger conduction states, Phys. Rev. Lett. 107(12), 126802 (2011)
CrossRef ADS Google scholar
[19]
I. N. Sivkov, O. O. Brovko, D. I. Bazhanov, and V. S. Stepanyuk, Emergence of high spin polarization of conductance in atomic-size Co-Au contacts, Phys. Rev. B 89(7), 075436 (2014)
CrossRef ADS Google scholar
[20]
M. Kumar, K. K. V. Sethu, and J. M. van Ruitenbeek, Molecule-assisted ferromagnetic atomic chain formation, Phys. Rev. B 91(24), 245404 (2015)
CrossRef ADS Google scholar
[21]
X. Zheng, Y. Q. Xie, X. Ye, and S. H. Ke, Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains, J. Appl. Phys. 117(4), 043902 (2015)
CrossRef ADS Google scholar
[22]
Y. Xie, Q. Li, L. Huang, X. Ye, and S. H. Ke, Conductance of single-atom magnetic junctions: A firstprinciples study, Appl. Phys. Lett. 101(19), 192408 (2012)
CrossRef ADS Google scholar
[23]
X. Li, M. Y. Chen, X. Ye, Y. Q. Xie, and S. H. Ke, Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment, J. Appl. Phys. 117(6), 064310 (2015)
CrossRef ADS Google scholar
[24]
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
CrossRef ADS Google scholar
[25]
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[26]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef ADS Google scholar
[27]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
CrossRef ADS Google scholar
[28]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[29]
S. H. Ke, H. U. Baranger, and W. Yang, Electron transport through molecules: Self-consistent and nonselfconsistent approaches, Phys. Rev. B 70(8), 085410 (2004)
CrossRef ADS Google scholar
[30]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2278 KB)

Accesses

Citations

Detail

Sections
Recommended

/