Constructing backbone network by using tinker algorithm

Zhiwei He, Meng Zhan, Jianxiong Wang, Chenggui Yao

PDF(797 KB)
PDF(797 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 120701. DOI: 10.1007/s11467-016-0645-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructing backbone network by using tinker algorithm

Author information +
History +

Abstract

Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

Keywords

biological network / backbone network / tinker algorithm / mathematical model

Cite this article

Download citation ▾
Zhiwei He, Meng Zhan, Jianxiong Wang, Chenggui Yao. Constructing backbone network by using tinker algorithm. Front. Phys., 2017, 12(6): 120701 https://doi.org/10.1007/s11467-016-0645-7

References

[1]
S. A. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, New York: Oxford University Press, 1993
[2]
U. Alon, An Introduction to System Biology: Design Principles of Biological Circuits, Boca Raton: Chapman & Hall, 2006
[3]
I. Rigoutsos and G. Stephanopoulos, Systems Biology: Networks, Models, and Applications, New York: Oxford University Press, 2007
[4]
X. F. Pang, Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II), Front. Phys. 3(4), 457 (2008)
CrossRef ADS Google scholar
[5]
D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22(4), 403 (1976)
CrossRef ADS Google scholar
[6]
H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review, J. Comput. Biol. 9(1), 67 (2002)
CrossRef ADS Google scholar
[7]
X. Cai and Z. M. Yuan, Stochastic modeling and simulation of the p53-MDM2/MDMX loop, J. Comput. Biol. 16(7), 917 (2009)
CrossRef ADS Google scholar
[8]
Y. P. Zhang, M. P. Qian, Q. Ouyang, M. H. Deng, F. T. Li, and C. Tang, Stochastic model of yeast cell-cycle network, Physica D 219(1), 35 (2006)
CrossRef ADS Google scholar
[9]
K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novak, and J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol. Biol. Cell 11(1), 369 (2000)
CrossRef ADS Google scholar
[10]
B. Novak, Z. Pataki, A. Ciliberto, and J. J. Tyson, Mathematical model of the cell division cycle of fission yeast., Chaos 11(1), 277 (2001)
CrossRef ADS Google scholar
[11]
J. J. Tyson, K. Chen, and B. Novak, Network dynamics and cell physiology, Nat. Rev. Mol. Cell Biol. 2(12), 908 (2001)
CrossRef ADS Google scholar
[12]
J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15(2), 221 (2003)
CrossRef ADS Google scholar
[13]
A. Csikász-Nagy, Computational systems biology of the cell cycle, Brief. Bioinformatics 10(4), 424 (2009)
CrossRef ADS Google scholar
[14]
S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22(3), 437 (1969)
CrossRef ADS Google scholar
[15]
F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. USA 101(14), 4781 (2004)
CrossRef ADS Google scholar
[16]
S. Bornholdt, Systems biology. Less is more in modeling large genetic networks, Science 310(5747), 449 (2005)
CrossRef ADS Google scholar
[17]
G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-based network decomposition reveals backbone motif structure, Proc. Natl. Acad. Sci. USA 107(23), 10478 (2010)
CrossRef ADS Google scholar
[18]
Q. Z. Xia, L. L. Liu, W. M. Ye, and G. Hu, Inference of gene regulatory networks with the strong-inhibition Boolean model, New J. Phys. 13(8), 083002 (2011)
CrossRef ADS Google scholar
[19]
G. Wang, Y. Rong, H. Chen, C. Pearson, C. Du, R. Simha, and C. Zeng, Process-driven inference of biological network structure: Feasibility, minimality, and multiplicity, PLoS ONE 7(7), e40330 (2012)
CrossRef ADS Google scholar
[20]
M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE 3(2), e1672 (2008)
CrossRef ADS Google scholar
[21]
M. I. Davidich and S. Bornholdt, Boolean network model predicts knockout mutant phenotypes of fission yeast, PLoS ONE 8(9), e71786 (2013)
CrossRef ADS Google scholar
[22]
H. Kitano, Biological robustness, Nat. Rev. Genet. 5(11), 826 (2004)
CrossRef ADS Google scholar
[23]
J. Stelling, U. Sauer, Z. Szallasi, F. III. Doyle, and J. Doyle, Robustness of cellular functions, Cell 118(6), 675 (2004)
CrossRef ADS Google scholar
[24]
A. Wagner, Robustness and Evolvability in Living Systems, Princeton Studies in Complexity, Princeton: Princeton University Press, 2005
[25]
G. M. Cooper, The Cell: A Molecular Approach, Chapter 14, Washington: ASM Press, 2000
[26]
M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano, Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol. 216(1), 19 (2002)
CrossRef ADS Google scholar
[27]
U. de Lichtenberg, L. J. Jensen, A. Fausbøll, T. S. Jensen, P. Bork, and S. Brunak, Comparison of computational methods for the identification of cell cycleregulated genes, Bioinformatics 21(7), 1164 (2005)
CrossRef ADS Google scholar
[28]
F. T. Li, M. Y. Hu, B. Zhao, H. Yan, B. Wu, and Q. Ouyang, A globally attractive cycle driven by sequential bifurcations containing ghost effects in a 3-node yeast cell cycle model, arXiv: 1312.5204 (2014)
[29]
X. M. Zhang, B. Shao, Y. L. Wu, and Q. Ouyang, A reverse engineering approach to optimize experiments for the construction of biological regulatory networks, PLoS ONE 8(9), e75931 (2013)
CrossRef ADS Google scholar
[30]
L. Yang, Y. Meng, C. Bao, W. Liu, C. Ma, A. Li, Z. Xuan, G. Shan, and Y. Jia, Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition, PLoS ONE 8(3), e57009 (2013)
CrossRef ADS Google scholar
[31]
F. Jacob, Evolution and tinkering,Science 196(4295), 1161 (1977)
CrossRef ADS Google scholar
[32]
U. Alon, Biological networks: The tinkerer as an engineer, Science 301(5641), 1866 (2003)
CrossRef ADS Google scholar
[33]
U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet. 8(6), 450 (2007)
CrossRef ADS Google scholar
[34]
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks., Science 298(5594), 824 (2002)
CrossRef ADS Google scholar
[35]
C. Oosawa and M. A. Savageau, Effects of alternative connectivity on behavior of randomly constructed Boolean networks, Physica D 170(2), 143 (2002)
CrossRef ADS Google scholar
[36]
S. Bornholdt and T. Rohlf, Topological evolution of dynamical networks: Global criticality from local dynamics, Phys. Rev. Lett. 84, 6114 (2000)
CrossRef ADS Google scholar
[37]
M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I. Garrels, YPD™, PombePD™ and WormPD™: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information, Nucleic Acids Res. 29(1), 75 (2001)
CrossRef ADS Google scholar
[38]
T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar- Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, Transcriptional regulatory networks in Saccharomyces cerevisiae, Science 298(5594), 799 (2002)
CrossRef ADS Google scholar
[39]
L. Mendoza and I. Xenarios, A method for the generation of standardized qualitative dynamical systems of regulatory networks, Theor. Biol. Med. Model 3(1), 13 (2006)
CrossRef ADS Google scholar
[40]
B. Novak and J. J. Tyson, Modeling the control of DNA replication in fission yeast, Proc. Natl. Acad. Sci. USA 94(17), 9147 (1997)
CrossRef ADS Google scholar
[41]
A. Sveiczer, A. Csikász-Nagy, B. Gyorffy, J. J. Tyson, and B. Novak, Modeling the fission yeast cell cycle: Quantized cycle times in wee1- cdc25Delta mutant cells, Proc. Natl. Acad. Sci. USA 97(14), 7865 (2000)
CrossRef ADS Google scholar
[42]
B. Li, B. Shao, C. Yu, Q. Ouyang, and H. Wang, A mathematical model for cell size control in fission yeast, J. Theor. Biol. 264(3), 771 (2010)
CrossRef ADS Google scholar
[43]
M. Davidich and S. Bornholdt, The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model, J. Theor. Biol. 255(3), 269 (2008)
CrossRef ADS Google scholar
[44]
Z. Y. Zhang, Z. Y. Li, G. Hu, and Z. G. Zheng, Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach, EPL 105(1), 18003 (2014)
CrossRef ADS Google scholar
[45]
X. Liao, Q. Xia, Y. Qian, L. Zhang, G. Hu, and Y. Mi, Pattern formation in oscillatory complex networks consisting of excitable nodes, Phys Rev E 83, 056204 (2011)
CrossRef ADS Google scholar
[46]
B. Novak, A. Csikász-Nagy, B. Gyorffy, K. Nasmyth, and J. J. Tyson, Model scenarios for evolution of the eukaryotic cell cycle, Philos. Trans. R. Soc. Lond. B 353(1378), 2063 (1998)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(797 KB)

Accesses

Citations

Detail

Sections
Recommended

/