Impurity-limited quantum transport variability in magnetic tunnel junctions
Jianing Zhuang, Yin Wang, Yan Zhou, Jian Wang, Hong Guo
Impurity-limited quantum transport variability in magnetic tunnel junctions
We report an extensive first-principles investigation of impurity-induced device-to-device variability of spin-polarized quantum tunneling through Fe/MgO/Fe magnetic tunnel junctions (MTJ). In particular, we calculated the tunnel magnetoresistance ratio (TMR) and the average values and variances of the currents and spin transfer torque (STT) of an interfacially doped Fe/MgO/Fe MTJ. Further, we predicted that N-doped MgO can improve the performance of a doped Fe/MgO/Fe MTJ. Our firstprinciples calculations of the fluctuations of the on/off currents and STT provide vital information for future predictions of the long-term reliability of spintronic devices, which is imperative for high-volume production.
megnetic tunnel junctions / tunnel magnetoresistance / first principles / NEGF-DFT
[1] |
International technology roadmap for semiconductors, http://public.itrs.net/
|
[2] |
A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 mm MOSFET’s: A 3D “atomistic” simulation study, IEEE Trans. Electron Dev. 45(12), 2505 (1998)
CrossRef
ADS
Google scholar
|
[3] |
P. M. Koenraad and M. E. Flatté, Single dopants in semiconductors, Nat. Mater. 10(2), 91 (2011)
CrossRef
ADS
Google scholar
|
[4] |
H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281(5379), 951 (1998)
CrossRef
ADS
Google scholar
|
[5] |
V. P. Georgiev, E. A. Towie, and A. Asenov, Impact of precisely positioned dopants on the performance of an ultimate silicon nanowire transistor: A full threedimensional NEGF simulation study, IEEE Trans. Electron Dev. 60(3), 965 (2013)
CrossRef
ADS
Google scholar
|
[6] |
S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Dev. 54(5), 991 (2007)
CrossRef
ADS
Google scholar
|
[7] |
J. A. Katine and E. E. Fullerton, Device implications of spin-transfer torques, J. Magn. Magn. Mater. 320(7), 1217 (2008)
CrossRef
ADS
Google scholar
|
[8] |
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
CrossRef
ADS
Google scholar
|
[9] |
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
CrossRef
ADS
Google scholar
|
[10] |
D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)
CrossRef
ADS
Google scholar
|
[11] |
Y. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
CrossRef
ADS
Google scholar
|
[12] |
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
CrossRef
ADS
Google scholar
|
[13] |
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
CrossRef
ADS
Google scholar
|
[14] |
J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159(1–2), L1 (1996)
CrossRef
ADS
Google scholar
|
[15] |
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54(13), 9353 (1996)
CrossRef
ADS
Google scholar
|
[16] |
W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. Maclaren, Spin-dependent tunneling conductance of FejMgOjFe sandwiches, Phys. Rev. B 63(5), 054416 (2001)
CrossRef
ADS
Google scholar
|
[17] |
J. Zhuang and J. Wang, Conductance fluctuation and shot noise in disordered graphene systems, a perturbation expansion approach, J. Appl. Phys. 114(6), 063708 (2013)
CrossRef
ADS
Google scholar
|
[18] |
Y. Zhu, L. Liu, and H. Guo, Quantum transport theory with nonequilibrium coherent potentials, Phys. Rev. B 88(20), 205415 (2013)
CrossRef
ADS
Google scholar
|
[19] |
Y. Zhu, L. Liu, and H. Guo, Green’s function theory for predicting device-to-device variability, Phys. Rev. B 88(8), 085420 (2013)
CrossRef
ADS
Google scholar
|
[20] |
S. Datta, Electronic Transport in Mesoscopic System, Cambridge: Cambridge University Press, 1995
CrossRef
ADS
Google scholar
|
[21] |
Y. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
CrossRef
ADS
Google scholar
|
[22] |
J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, and H. Guo, Quantum transport modeling from first principles, Proc. IEEE 101(2), 518 (2013)
CrossRef
ADS
Google scholar
|
[23] |
Y. Zhu and L. Liu, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices, World Scientific, 2016
CrossRef
ADS
Google scholar
|
[24] |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63, 121104(R) (2001)
|
[25] |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef
ADS
Google scholar
|
[26] |
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, M. Rinkoski, C. Perez, R. A. Buhrman, and D. C. Ralph, Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane, Phys. Rev. Lett. 93(3), 036601 (2004)
CrossRef
ADS
Google scholar
|
[27] |
D. C. Ralph and M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320(7), 1190 (2008)
CrossRef
ADS
Google scholar
|
[28] |
P. M. Haney, R. A. Duine, A. S. Nunez, and A. H. Mac-Donald, Current-induced torques in magnetic metals: Beyond spin-transfer, J. Magn. Magn. Mater. 320(7), 1300 (2008)
CrossRef
ADS
Google scholar
|
[29] |
I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett. 97(23), 237205 (2006)
CrossRef
ADS
Google scholar
|
[30] |
X. Jia, K. Xia, Y. Ke, and H. Guo, Nonlinear bias dependence of spin-transfer torque from atomic first principles, Phys. Rev. B 84(1), 014401 (2011)
CrossRef
ADS
Google scholar
|
[31] |
I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic Structure of the Disordered Alloys, Surfaces, and Interfaces, Boston: Kluwer, 1977
|
[32] |
J. Kudrnovský, V. Drchal, and J. Maek, Canonical description of electron states in random alloys, Phys. Rev. B 35(5), 2487 (1987)
CrossRef
ADS
Google scholar
|
[33] |
D. Liu, X. Han, and H. Guo, Junction resistance, tunnel magnetoresistance ratio, and spin-transfer torque in Zndoped magnetic tunnel junctions, Phys. Rev. B 85(24), 245436 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |