Impurity-limited quantum transport variability in magnetic tunnel junctions

Jianing Zhuang, Yin Wang, Yan Zhou, Jian Wang, Hong Guo

PDF(875 KB)
PDF(875 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127304. DOI: 10.1007/s11467-016-0644-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Impurity-limited quantum transport variability in magnetic tunnel junctions

Author information +
History +

Abstract

We report an extensive first-principles investigation of impurity-induced device-to-device variability of spin-polarized quantum tunneling through Fe/MgO/Fe magnetic tunnel junctions (MTJ). In particular, we calculated the tunnel magnetoresistance ratio (TMR) and the average values and variances of the currents and spin transfer torque (STT) of an interfacially doped Fe/MgO/Fe MTJ. Further, we predicted that N-doped MgO can improve the performance of a doped Fe/MgO/Fe MTJ. Our firstprinciples calculations of the fluctuations of the on/off currents and STT provide vital information for future predictions of the long-term reliability of spintronic devices, which is imperative for high-volume production.

Keywords

megnetic tunnel junctions / tunnel magnetoresistance / first principles / NEGF-DFT

Cite this article

Download citation ▾
Jianing Zhuang, Yin Wang, Yan Zhou, Jian Wang, Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions. Front. Phys., 2017, 12(4): 127304 https://doi.org/10.1007/s11467-016-0644-8

References

[1]
International technology roadmap for semiconductors, http://public.itrs.net/
[2]
A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 mm MOSFET’s: A 3D “atomistic” simulation study, IEEE Trans. Electron Dev. 45(12), 2505 (1998)
CrossRef ADS Google scholar
[3]
P. M. Koenraad and M. E. Flatté, Single dopants in semiconductors, Nat. Mater. 10(2), 91 (2011)
CrossRef ADS Google scholar
[4]
H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281(5379), 951 (1998)
CrossRef ADS Google scholar
[5]
V. P. Georgiev, E. A. Towie, and A. Asenov, Impact of precisely positioned dopants on the performance of an ultimate silicon nanowire transistor: A full threedimensional NEGF simulation study, IEEE Trans. Electron Dev. 60(3), 965 (2013)
CrossRef ADS Google scholar
[6]
S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond, IEEE Trans. Electron Dev. 54(5), 991 (2007)
CrossRef ADS Google scholar
[7]
J. A. Katine and E. E. Fullerton, Device implications of spin-transfer torques, J. Magn. Magn. Mater. 320(7), 1217 (2008)
CrossRef ADS Google scholar
[8]
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
CrossRef ADS Google scholar
[9]
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
CrossRef ADS Google scholar
[10]
D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Nonlinear spin current and magnetoresistance of molecular tunnel junctions, Phys. Rev. Lett. 96(16), 166804 (2006)
CrossRef ADS Google scholar
[11]
Y. Ke, K. Xia, and H. Guo, Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions, Phys. Rev. Lett. 105(23), 236801 (2010)
CrossRef ADS Google scholar
[12]
S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3(12), 862 (2004)
CrossRef ADS Google scholar
[13]
S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater. 3(12), 868 (2004)
CrossRef ADS Google scholar
[14]
J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159(1–2), L1 (1996)
CrossRef ADS Google scholar
[15]
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54(13), 9353 (1996)
CrossRef ADS Google scholar
[16]
W. H. Butler, X. G. Zhang, T. C. Schulthess, and J. M. Maclaren, Spin-dependent tunneling conductance of FejMgOjFe sandwiches, Phys. Rev. B 63(5), 054416 (2001)
CrossRef ADS Google scholar
[17]
J. Zhuang and J. Wang, Conductance fluctuation and shot noise in disordered graphene systems, a perturbation expansion approach, J. Appl. Phys. 114(6), 063708 (2013)
CrossRef ADS Google scholar
[18]
Y. Zhu, L. Liu, and H. Guo, Quantum transport theory with nonequilibrium coherent potentials, Phys. Rev. B 88(20), 205415 (2013)
CrossRef ADS Google scholar
[19]
Y. Zhu, L. Liu, and H. Guo, Green’s function theory for predicting device-to-device variability, Phys. Rev. B 88(8), 085420 (2013)
CrossRef ADS Google scholar
[20]
S. Datta, Electronic Transport in Mesoscopic System, Cambridge: Cambridge University Press, 1995
CrossRef ADS Google scholar
[21]
Y. Ke, K. Xia, and H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Phys. Rev. Lett. 100(16), 166805 (2008)
CrossRef ADS Google scholar
[22]
J. Maassen, M. Harb, V. Michaud-Rioux, Y. Zhu, and H. Guo, Quantum transport modeling from first principles, Proc. IEEE 101(2), 518 (2013)
CrossRef ADS Google scholar
[23]
Y. Zhu and L. Liu, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices, World Scientific, 2016
CrossRef ADS Google scholar
[24]
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63, 121104(R) (2001)
[25]
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[26]
S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, M. Rinkoski, C. Perez, R. A. Buhrman, and D. C. Ralph, Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane, Phys. Rev. Lett. 93(3), 036601 (2004)
CrossRef ADS Google scholar
[27]
D. C. Ralph and M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320(7), 1190 (2008)
CrossRef ADS Google scholar
[28]
P. M. Haney, R. A. Duine, A. S. Nunez, and A. H. Mac-Donald, Current-induced torques in magnetic metals: Beyond spin-transfer, J. Magn. Magn. Mater. 320(7), 1300 (2008)
CrossRef ADS Google scholar
[29]
I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, Anomalous bias dependence of spin torque in magnetic tunnel junctions, Phys. Rev. Lett. 97(23), 237205 (2006)
CrossRef ADS Google scholar
[30]
X. Jia, K. Xia, Y. Ke, and H. Guo, Nonlinear bias dependence of spin-transfer torque from atomic first principles, Phys. Rev. B 84(1), 014401 (2011)
CrossRef ADS Google scholar
[31]
I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic Structure of the Disordered Alloys, Surfaces, and Interfaces, Boston: Kluwer, 1977
[32]
J. Kudrnovský, V. Drchal, and J. Maek, Canonical description of electron states in random alloys, Phys. Rev. B 35(5), 2487 (1987)
CrossRef ADS Google scholar
[33]
D. Liu, X. Han, and H. Guo, Junction resistance, tunnel magnetoresistance ratio, and spin-transfer torque in Zndoped magnetic tunnel junctions, Phys. Rev. B 85(24), 245436 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(875 KB)

Accesses

Citations

Detail

Sections
Recommended

/