Homomorphic encryption experiments on IBM’s cloud quantum computing platform

He-Liang Huang, You-Wei Zhao, Tan Li, Feng-Guang Li, Yu-Tao Du, Xiang-Qun Fu, Shuo Zhang, Xiang Wang, Wan-Su Bao

PDF(873 KB)
PDF(873 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120305. DOI: 10.1007/s11467-016-0643-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Homomorphic encryption experiments on IBM’s cloud quantum computing platform

Author information +
History +

Abstract

Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM’s cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

Keywords

quantum computing / homomorphic encryption / cloud computing / IBM quantum experience / linear equations

Cite this article

Download citation ▾
He-Liang Huang, You-Wei Zhao, Tan Li, Feng-Guang Li, Yu-Tao Du, Xiang-Qun Fu, Shuo Zhang, Xiang Wang, Wan-Su Bao. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys., 2017, 12(1): 120305 https://doi.org/10.1007/s11467-016-0643-9

References

[1]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature 464(7285), 45 (2010)
CrossRef ADS Google scholar
[2]
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef ADS Google scholar
[3]
J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank, J. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519(7541), 66 (2015)
CrossRef ADS Google scholar
[4]
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)
CrossRef ADS Google scholar
[5]
R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano, and J. M. Martinis, Digital quantum simulation of fermionic models with a superconducting circuitm, Nature Communications 6, 7654 (2015)
CrossRef ADS Google scholar
[6]
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)
CrossRef ADS Google scholar
[7]
L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414(6866), 883 (2001)
CrossRef ADS Google scholar
[8]
C. Y. Lu, D. E. Browne, T. Yang, and J. W. Pan, Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits, Phys. Rev. Lett. 99(25), 250504 (2007)
CrossRef ADS Google scholar
[9]
E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis, Computing prime factors with a Josephson phase qubit quantum processor, Nat. Phys. 8(10), 719 (2012)
CrossRef ADS Google scholar
[10]
T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Realization of a scalable Shor algorithm, Science 351(6277), 1068 (2016)
CrossRef ADS Google scholar
[11]
R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)
CrossRef ADS Google scholar
[12]
R. Blatt and C. Roos, Quantum simulations with trapped ions, Nat. Phys. 8(4), 277 (2012)
CrossRef ADS Google scholar
[13]
A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nat. Phys. 8(4), 292 (2012)
CrossRef ADS Google scholar
[14]
A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Phys. 8(4), 285 (2012)
CrossRef ADS Google scholar
[15]
A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)
CrossRef ADS Google scholar
[16]
S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. DakićA. Aspuru-Guzik, and P. Walther, A two-qubit photonic quantum processor and its application to solving systems of linear equations, Sci. Rep. 4, 6115 (2014)
CrossRef ADS Google scholar
[17]
X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Experimental quantum computing to solve systems of linear equations, Phys. Rev. Lett. 110(23), 230501 (2013)
CrossRef ADS Google scholar
[18]
P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113(13), 130503 (2014)
CrossRef ADS Google scholar
[19]
X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Entanglementbased machine learning on a quantum computer, Phys. Rev. Lett. 114(11), 110504 (2015)
CrossRef ADS Google scholar
[20]
IBM, The quantum experience, http://www. research. ibm.com/quantum/, 2016
[21]
S. J. Devitt, Performing quantum computing experiments in the cloud, Phys. Rev. A 94, 032329 (2016)
CrossRef ADS Google scholar
[22]
D. Alsina and J. I. Latorre, Experimental test of Mermin inequalities on a 5-qubit quantum computer, Phys. Rev. A 94, 012314 (2016)
CrossRef ADS Google scholar
[23]
R. Rundle, T. Tilma, J. Samson, and M. Everitt, Quantum state reconstruction made easy: A direct method for tomography, arXiv: 1605.08922 (2016)
[24]
A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind quantum computation, in: 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), IEEE, 2009, pp 517–526
[25]
J. F. Fitzsimons and E. Kashefi, Unconditionally verifiable blind computation, arXiv: 1203.5217 (2012)
[26]
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)
CrossRef ADS Google scholar
[27]
S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, Experimental verification of quantum computation, Nat. Phys. 9(11), 727 (2013)
CrossRef ADS Google scholar
[28]
R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomorphisms, Foundations of Secure Computation 4, 169 (1978)
[29]
C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009
[30]
M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, in Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2010, pp 24–43
[31]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(873 KB)

Accesses

Citations

Detail

Sections
Recommended

/