Homomorphic encryption experiments on IBM’s cloud quantum computing platform

He-Liang Huang , You-Wei Zhao , Tan Li , Feng-Guang Li , Yu-Tao Du , Xiang-Qun Fu , Shuo Zhang , Xiang Wang , Wan-Su Bao

Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120305

PDF (873KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120305 DOI: 10.1007/s11467-016-0643-9
RESEARCH ARTICLE

Homomorphic encryption experiments on IBM’s cloud quantum computing platform

Author information +
History +
PDF (873KB)

Abstract

Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM’s cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

Keywords

quantum computing / homomorphic encryption / cloud computing / IBM quantum experience / linear equations

Cite this article

Download citation ▾
He-Liang Huang, You-Wei Zhao, Tan Li, Feng-Guang Li, Yu-Tao Du, Xiang-Qun Fu, Shuo Zhang, Xiang Wang, Wan-Su Bao. Homomorphic encryption experiments on IBM’s cloud quantum computing platform. Front. Phys., 2017, 12(1): 120305 DOI:10.1007/s11467-016-0643-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature 464(7285), 45 (2010)

[2]

X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

[3]

J. Kelly, R. Barends, A. Fowler, A. Megrant, E. Jeffrey, T. White, D. Sank, J. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519(7541), 66 (2015)

[4]

R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)

[5]

R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, E. Solano, and J. M. Martinis, Digital quantum simulation of fermionic models with a superconducting circuitm, Nature Communications 6, 7654 (2015)

[6]

P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)

[7]

L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414(6866), 883 (2001)

[8]

C. Y. Lu, D. E. Browne, T. Yang, and J. W. Pan, Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits, Phys. Rev. Lett. 99(25), 250504 (2007)

[9]

E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis, Computing prime factors with a Josephson phase qubit quantum processor, Nat. Phys. 8(10), 719 (2012)

[10]

T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Realization of a scalable Shor algorithm, Science 351(6277), 1068 (2016)

[11]

R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)

[12]

R. Blatt and C. Roos, Quantum simulations with trapped ions, Nat. Phys. 8(4), 277 (2012)

[13]

A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nat. Phys. 8(4), 292 (2012)

[14]

A. Aspuru-Guzik and P. Walther, Photonic quantum simulators, Nat. Phys. 8(4), 285 (2012)

[15]

A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)

[16]

S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. DakićA. Aspuru-Guzik, and P. Walther, A two-qubit photonic quantum processor and its application to solving systems of linear equations, Sci. Rep. 4, 6115 (2014)

[17]

X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Experimental quantum computing to solve systems of linear equations, Phys. Rev. Lett. 110(23), 230501 (2013)

[18]

P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113(13), 130503 (2014)

[19]

X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Entanglementbased machine learning on a quantum computer, Phys. Rev. Lett. 114(11), 110504 (2015)

[20]

IBM, The quantum experience, 2016

[21]

S. J. Devitt, Performing quantum computing experiments in the cloud, Phys. Rev. A 94, 032329 (2016)

[22]

D. Alsina and J. I. Latorre, Experimental test of Mermin inequalities on a 5-qubit quantum computer, Phys. Rev. A 94, 012314 (2016)

[23]

R. Rundle, T. Tilma, J. Samson, and M. Everitt, Quantum state reconstruction made easy: A direct method for tomography, arXiv: 1605.08922 (2016)

[24]

A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind quantum computation, in: 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), IEEE, 2009, pp 517–526

[25]

J. F. Fitzsimons and E. Kashefi, Unconditionally verifiable blind computation, arXiv: 1203.5217 (2012)

[26]

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)

[27]

S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, Experimental verification of quantum computation, Nat. Phys. 9(11), 727 (2013)

[28]

R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomorphisms, Foundations of Secure Computation 4, 169 (1978)

[29]

C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009

[30]

M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, in Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2010, pp 24–43

[31]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2010

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (873KB)

1305

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/