Detecting ground-state degeneracy in many-body systems through qubit decoherence
Hai-Tao Cui (崔海涛), Xue-Xi Yi (衣学喜)
Detecting ground-state degeneracy in many-body systems through qubit decoherence
By coupling with a qubit, we demonstrate that qubit decoherence can unambiguously detect the occurrence of ground-state degeneracy in many-body systems. We first demonstrate universality using the two-band model. Consequently, several exemplifications, focused on topological condensed matter systems in one, two, and three dimensions, are presented to validate our proposal. The key point is that qubit decoherence varies significantly when energy bands touch each other at the Fermi surface. In addition, it can partially reflect the degeneracy inside the band. This feature implies that qubit decoherence can be used for reliable diagnosis of ground-state degeneracy.
decoherence / quantum phase transition / ground-state degeneracy
[1] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[2] |
X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40(10), 7387 (1989)
CrossRef
ADS
Google scholar
|
[3] |
X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41(13), 9377 (1990)
CrossRef
ADS
Google scholar
|
[4] |
A. Damascelli, Z. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate supercon-ductors, Rev. Mod. Phys. 75(2), 473 (2003)
CrossRef
ADS
Google scholar
|
[5] |
H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Decay of Loschmidt echo enhanced by quantum criticality, Phys. Rev. Lett. 96(14), 140604 (2006)
CrossRef
ADS
Google scholar
|
[6] |
W. Yang, Z. Y. Wang, and R. B. Liu, Preserving qubit coherence by dynamical decoupling, Front. Phys. 6(1), 2 (2011)
CrossRef
ADS
Google scholar
|
[7] |
S. Ryu and Y. Hatsugai, Topological origin of zeroenergy edge states in particle–hole symmetric systems, Phys. Rev. Lett. 89(7), 077002 (2002)
CrossRef
ADS
Google scholar
|
[8] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[9] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[10] |
X. L. Qi, Y. S. Wu, and S. C. Zhang, Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B 74(8), 085308 (2006)
CrossRef
ADS
Google scholar
|
[11] |
B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors, New Jersey: Princeton University Press, 2013
CrossRef
ADS
Google scholar
|
[12] |
A. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons in conducting polymers, Rev. Mod. Phys. 60(3), 781 (1988)
CrossRef
ADS
Google scholar
|
[13] |
S. Ryu and Y. Hatsugai, Entanglement entropy and the Berry phase in the solid state, Phys. Rev. B 73(24), 245115 (2006)
CrossRef
ADS
Google scholar
|
[14] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[15] |
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef
ADS
Google scholar
|
[16] |
S. Murakami, Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase, New J. Phys. 9(9), 356 (2007)
CrossRef
ADS
Google scholar
|
[17] |
X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef
ADS
Google scholar
|
[18] |
M. M. Vazifeh and M. Franz, Electromagnetic response of Weyl semimetals, Phys. Rev. Lett. 111(2), 027201 (2013)
CrossRef
ADS
Google scholar
|
[19] |
M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices, Oxford: Oxford University Press, 2012
CrossRef
ADS
Google scholar
|
[20] |
Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
CrossRef
ADS
Google scholar
|
[21] |
G. C. Liu, S. L. Zhu, S. J. Jiang, F. D. Sun, and W. M. Liu, Simulating and detecting the quantum spin Hall effect in the Kagome optical lattice, Phys. Rev. A 82(5), 053605 (2010)
CrossRef
ADS
Google scholar
|
[22] |
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature 483(7389), 302 (2012)
CrossRef
ADS
Google scholar
|
[23] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermins, Nature 515(7526), 237 (2014)
CrossRef
ADS
Google scholar
|
[24] |
L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier- Smith, and U. Schneider, An Aharanov–Bohm interferometer for determining Bloch band topology, Science 347(6219), 288 (2015)
CrossRef
ADS
Google scholar
|
[25] |
X. X. Yi, H. T. Cui, and L. C. Wang, Entanglement induced in spin-1/2 particles by a spin chain near its critical points, Phys. Rev. A 74(5), 054102 (2006)
CrossRef
ADS
Google scholar
|
[26] |
A. Abliz, H. J. Gao, X. C. Xie, Y. S. Wu, and W. M. Liu, Entanglement control in an anisotropic two-qubit Heisenberg XYZmodel with external magnetic fields, Phys. Rev. A 74(5), 052105 (2006)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |