Master equation approach to transient quantum transport in nanostructures

Pei-Yun Yang, Wei-Min Zhang

PDF(4235 KB)
PDF(4235 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 127204. DOI: 10.1007/s11467-016-0640-z
REVIEW ARTICLE
REVIEW ARTICLE

Master equation approach to transient quantum transport in nanostructures

Author information +
History +

Abstract

In this review article, we present a non-equilibrium quantum transport theory for transient electron dynamics in nanodevices based on exact Master equation derived with the path integral method in the fermion coherent-state representation. Applying the exact Master equation to nanodevices, we also establish the connection of the reduced density matrix and the transient quantum transport current with the Keldysh nonequilibrium Green functions. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. In applications, we utilize the theory to specific quantum transport systems, a variety of quantum decoherence and quantum transport phenomena involving the non-Markovian memory effect are investigated in both transient and stationary scenarios at arbitrary initial temperatures of the contacts.

Keywords

quantum transport / Master equation / open systems / nanostructures

Cite this article

Download citation ▾
Pei-Yun Yang, Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures. Front. Phys., 2017, 12(4): 127204 https://doi.org/10.1007/s11467-016-0640-z

References

[1]
M. A. Kastner, Artificial atoms, Phys. Today 46(1), 24 (1993)
CrossRef ADS Google scholar
[2]
L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semiconductor double barriers, Appl. Phys. Lett. 24(12), 593 (1974)
CrossRef ADS Google scholar
[3]
T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437 (1982)
CrossRef ADS Google scholar
[4]
E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes, Appl. Phys. Lett. 58(20), 2291 (1991)
CrossRef ADS Google scholar
[5]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[6]
Y. Imry, Introduction to Mesoscopic Physics, 2nd Ed., Oxford, 2002
[7]
M. Büttiker, Scattering theory of current and intensity noise correlations in conductors and wave guides, Phys. Rev. B 46(19), 12485 (1992)
CrossRef ADS Google scholar
[8]
H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, Selfconsistent analysis of resonant tunneling current, Appl. Phys. Lett. 49(19), 1248 (1986)
CrossRef ADS Google scholar
[9]
A. Szafer and A. D. Stone, Theory of quantum conduction through a constriction, Phys. Rev. Lett. 62(3), 300 (1989)
CrossRef ADS Google scholar
[10]
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2(3), 407 (1961)
CrossRef ADS Google scholar
[11]
L. P. Kadano and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
[12]
K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep. 118(1–2), 1 (1985)
CrossRef ADS Google scholar
[13]
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58(2), 323 (1986)
CrossRef ADS Google scholar
[14]
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef ADS Google scholar
[15]
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid-State Sciences Vol. 123, 2008
[16]
N. S. Wingreen, A. P. Jauho, and Y. Meir, Tim dependent transport through a mesoscopic structure, Phys. Rev. B 48(11), 8487 (1993)
CrossRef ADS Google scholar
[17]
A. P. Jauho, N. S. Wingreen, and Y. Meir, Time dependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)
CrossRef ADS Google scholar
[18]
H. Schoeller and G. Schön, Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction, Phys. Rev. B 50(24), 18436 (1994)
CrossRef ADS Google scholar
[19]
S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
CrossRef ADS Google scholar
[20]
J. S. Jin, X. Zheng, and Y. J. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys. 128(23), 234703 (2008)
CrossRef ADS Google scholar
[21]
M. W.-Y. Tu and W. M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Phys. Rev. B 78(23), 235311 (2008)
CrossRef ADS Google scholar
[22]
M. W.-Y. Tu, M. T. Lee, and W. M. Zhang, Exact Master equation and non-Markovian decoherence for quantum dot quantum computing, Quantum Inf. Processing 8(6), 631 (2009)
CrossRef ADS Google scholar
[23]
J. S. Jin, M. W.-Y. Tu, W. M. Zhang, and Y. J. Yan, Non-equilibrium quantum theory for nanodevices based on the Feynman–Vernon influence functional, New J. Phys. 12(8), 083013 (2010)
CrossRef ADS Google scholar
[24]
X. Q. Li, Number-resolved Master equation approach to quantum measurement and quantum transport, Front. Phys. 11(4), 110307 (2016)
CrossRef ADS Google scholar
[25]
Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, Dissipaton equation of motion approach to open quantum systems, Front. Phys. 11(4), 110306 (2016)
CrossRef ADS Google scholar
[26]
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
CrossRef ADS Google scholar
[27]
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop. 1(3), 223 (1957)
CrossRef ADS Google scholar
[28]
R. Landauer, Electrical resistance of disordered one dimensional lattices, Philos. Mag. 21(172), 863 (1970)
CrossRef ADS Google scholar
[29]
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
CrossRef ADS Google scholar
[30]
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57(14), 1761 (1986)
CrossRef ADS Google scholar
[31]
Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep. 336(1–2), 1 (2000)
CrossRef ADS Google scholar
[32]
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38(14), 9375 (1988)
CrossRef ADS Google scholar
[33]
M. Büttiker, Quantized transmission of a saddle-point constriction, Phys. Rev. B 41(11), 7906 (1990)
CrossRef ADS Google scholar
[34]
P. Samuelsson and M. Büttiker, Quantum state tomography with quantum shot noise, Phys. Rev. B 73(4), 041305 (2006)
CrossRef ADS Google scholar
[35]
E. A. Rothstein, O. Entin-Wohlman, and A. Aharony, Noise spectra of a biased quantum dot, Phys. Rev. B 79(7), 075307 (2009)
CrossRef ADS Google scholar
[36]
M. Moskalets and M. Büttiker, Adiabatic quantum pump in the presence of external ac voltages, Phys. Rev. B 69(20), 205316 (2004)
CrossRef ADS Google scholar
[37]
O. Entin-Wohlman, A. Aharony, and Y. Levinson, Adiabatic transport in nanostructures, Phys. Rev. B 65(19), 195411 (2002)
CrossRef ADS Google scholar
[38]
M. Moskalets and M. Büttiker, Time-resolved noise of adiabatic quantum pumps, Phys. Rev. B 75(3), 035315 (2007)
CrossRef ADS Google scholar
[39]
G. D. Mahan, Many Particle Physics, 2nd Ed., New York: Plenum, 1990
CrossRef ADS Google scholar
[40]
L. V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47(4), 1515 (1964) [Sov. Phys. JETP 20(4), 1018 (1965)]
[41]
G. Stefanucci and C. O. Almbladh, Time-dependent partition-free approach in resonant tunneling systems, Phys. Rev. B 69(19), 195318 (2004)
CrossRef ADS Google scholar
[42]
M. Cini, Time-dependent approach to electron transport through junctions: General theory and simple applications, Phys. Rev. B 22(12), 5887 (1980)
CrossRef ADS Google scholar
[43]
U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124(6), 1866 (1961)
CrossRef ADS Google scholar
[44]
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef ADS Google scholar
[45]
C. Caroli, R. Combescot, P. Nozìeres, and D. Saint- James, Direct calculation of the tunneling current, J. Phys. Chem. 4, 916 (1971)
[46]
C. Caroli, R. Combescot, P. Nozìeres, and D. Saint- James, A direct calculation of the tunnelling current (II): Free electron description, J. Phys. Chem. 4(16), 2598 (1971)
[47]
D. C. Langreth, Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. Van Doren, New York: Plenum, 1976
[48]
X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Quantum master-equation approach to quantum transport through mesoscopic systems, Phys. Rev. B 71(20), 205304 (2005)
CrossRef ADS Google scholar
[49]
R. P. Feynman and F. L. Jr Vernon, The theory of a general quantum system interacting with a linear dissipative system, Ann. Phys. 24, 118 (1963)
CrossRef ADS Google scholar
[50]
W. M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62(4), 867 (1990)
CrossRef ADS Google scholar
[51]
M. W. Y. Tu, W. M. Zhang, and J. S. Jin, Intrinsic coherence dynamics and phase localization in nanoscale Aharonov–Bohm interferometers, Phys. Rev. B 83(11), 115318 (2011)
CrossRef ADS Google scholar
[52]
C. Y. Lin and W. M. Zhang, Single-electron turnstile pumping with high frequencies, Appl. Phys. Lett. 99(7), 072105 (2011)
CrossRef ADS Google scholar
[53]
M. W.-Y. Tu, W. M. Zhang, J. S. Jin, O. Entin- Wohlman, and A. Aharony, Transient quantum transport in double-dot Aharonov–Bohm interferometers, Phys. Rev. B 86(11), 115453 (2012)
CrossRef ADS Google scholar
[54]
M. W.-Y. Tu, W.M. Zhang, J. Jin, O. Entin-Wohlman, and A. Aharony, Transient quantum transport in double-dot Aharonov–Bohm interferometers, Phys. Rev. B 86(11), 115453 (2012)
CrossRef ADS Google scholar
[55]
J. S. Jin, M. W.-Y. Tu, N. E. Wang, and W. M. Zhang, Precision control of charge coherence in parallel double dot systems through spin–orbit interaction, J. Chem. Phys. 139(6), 064706 (2013)
CrossRef ADS Google scholar
[56]
M. W.-Y. Tu, A. Aharony, W. M. Zhang, and O. Entin- Wohlman, Real-time dynamics of spin-dependent transport through a double-quantum-dot Aharonov–Bohm interferometer with spin–orbit interaction, Phys. Rev. B 90(16), 165422 (2014)
CrossRef ADS Google scholar
[57]
P. Y. Yang, C. Y. Lin, and W. M. Zhang, Transient current–current correlations and noise spectra, Phys. Rev. B 89(11), 115411 (2014)
CrossRef ADS Google scholar
[58]
P. Y. Yang, C. Y. Lin, and W. M. Zhang, Master equation approach to transient quantum transport in nanostructures incorporating initial correlations, Phys. Rev. B 92(16), 165403 (2015)
CrossRef ADS Google scholar
[59]
M. W.-Y. Tu, A. Aharony, O. Entin-Wohlman, A. Schiller, and W. M. Zhang, Transient probing of the symmetry and the asymmetry of electron interference, Phys. Rev. B 93(12), 125437 (2016)
CrossRef ADS Google scholar
[60]
J. H. Liu, M. W.-Y. Tu, and W. M. Zhang, Quantum coherence of the molecular states and their corresponding currents in nanoscale Aharonov–Bohm interferometers, Phys. Rev. B 94(4), 045403 (2016)
CrossRef ADS Google scholar
[61]
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59(1), 1 (1987)
CrossRef ADS Google scholar
[62]
R. Landauer, Condensed-matter physics: The noise is the signal, Nature 392(6677), 658 (1998)
CrossRef ADS Google scholar
[63]
C. Beenakker and C. Schonenberger, Quantum shot noise, Phys. Today 56(5), 37 (2003)
CrossRef ADS Google scholar
[64]
T. Gramespacher and M. Büttiker, Quantum shot noise at local tunneling contacts on mesoscopic multiprobe conductors, Phys. Rev. Lett. 81(13), 2763 (1998)
CrossRef ADS Google scholar
[65]
L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 Fractionally Charged Laughlin Quasiparticle, Phys. Rev. Lett. 79(13), 2526 (1997)
CrossRef ADS Google scholar
[66]
F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Doubled full shot noise in quantum coherent superconductor–semiconductor junctions, Phys. Rev. Lett. 90(6), 067002 (2003)
CrossRef ADS Google scholar
[67]
R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Frequency dependence of shot noise in a diffusive mesoscopic conductor, Phys. Rev. Lett. 78(17), 3370 (1997)
CrossRef ADS Google scholar
[68]
R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven, Detection of quantum noise from an electrically driven two-level system, Science 301(5630), 203 (2003)
CrossRef ADS Google scholar
[69]
E. Onac, F. Balestro, L. H. W. van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Using a quantum dot as a high-frequency shot noise detector, Phys. Rev. Lett. 96(17), 176601 (2006)
CrossRef ADS Google scholar
[70]
E. Zakka-Bajjani, J. Ségala, F. Portier, P. Roche, D. C. Glattli, A. Cavanna, and Y. Jin, Experimental test of the high-frequency quantum shot noise theory in a quantum point contact, Phys. Rev. Lett. 99(23), 236803 (2007)
CrossRef ADS Google scholar
[71]
N. Lambert, R. Aguado, and T. Brandes, Nonequilibrium entanglement and noise in coupled qubits, Phys. Rev. B 75(4), 045340 (2007)
CrossRef ADS Google scholar
[72]
R. Aguado and T. Brandes, Shot noise spectrum of open dissipative quantum two-level systems, Phys. Rev. Lett. 92(20), 206601 (2004)
CrossRef ADS Google scholar
[73]
B. H. Wu and C. Timm, Noise spectra of ac-driven quantum dots: Floquet master-equation approach, Phys. Rev. B 81(7), 075309 (2010)
CrossRef ADS Google scholar
[74]
H. A. Engel and D. Loss, Asymmetric quantum shot noise in quantum dots, Phys. Rev. Lett. 93(13), 136602 (2004)
CrossRef ADS Google scholar
[75]
O. Entin-Wohlman, Y. Imry, S. A. Gurvitz, and A. Aharony, Steps and dips in the ac conductance and noise of mesoscopic structures, Phys. Rev. B 75(19), 193308 (2007)
CrossRef ADS Google scholar
[76]
C. P. Orth, D. F. Urban, and A. Komnik, Finite frequency noise properties of the nonequilibrium Anderson impurity model, Phys. Rev. B 86(12), 125324 (2012)
CrossRef ADS Google scholar
[77]
U. Gavish, Y. Levinson, and Y. Imry, Detection of quantum noise, Phys. Rev. B 62(16), 10637 (2000)
CrossRef ADS Google scholar
[78]
R. Aguado and L. P. Kouwenhoven, Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors, Phys. Rev. Lett. 84(9), 1986 (2000)
CrossRef ADS Google scholar
[79]
P. Billangeon, F. Pierre, R. Deblock, and H. Bouchiat, Out of equilibrium noise in electronic devices: from the classical to the quantum regime, J. Stat. Mech. 1, P01041 (2009)
CrossRef ADS Google scholar
[80]
N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Measurement of finite-frequency current statistics in a single-electron transistor, Nat. Commun. 3, 612 (2012)
CrossRef ADS Google scholar
[81]
A. Zazunov, M. Creux, E. Paladino, A. Crépieux, and T. Martin, Detection of finite-frequency current moments with a dissipative resonant circuit, Phys. Rev. Lett. 99(6), 066601 (2007)
CrossRef ADS Google scholar
[82]
Z. Feng, J. Maciejko, J. Wang, and H. Guo, Current fluctuations in the transient regime: An exact formulation for mesoscopic systems, Phys. Rev. B 77(7), 075302 (2008)
CrossRef ADS Google scholar
[83]
K. Joho, S. Maier, and A. Komnik, Transient noise spectra in resonant tunneling setups: Exactly solvable models, Phys. Rev. B 86(15), 155304 (2012)
CrossRef ADS Google scholar
[84]
R. Zwanzig, Nonequilibrium Statistical Mechanics, New York: Oxford University Press, 2001
[85]
G. F. Mazenlo, Nonequilibrium Statistics Mechanics, Weinheim: Wiley-VCH, 2006
CrossRef ADS Google scholar
[86]
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B 74(8), 085324 (2006)
CrossRef ADS Google scholar
[87]
W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Real-time detection of electron tunnelling in a quantum dot, Nature 423(6938), 422 (2003)
CrossRef ADS Google scholar
[88]
J. Bylander, T. Duty, and P. Delsing, Current measurement by real-time counting of single electrons, Nature 434(7031), 361 (2005)
CrossRef ADS Google scholar
[89]
S. Gustavsson, I. Shorubalko, R. Leturcq, S. Schön, and K. Ensslin, Measuring current by counting electrons in a nanowire quantum dot, Appl. Phys. Lett. 92(15), 152101 (2008)
CrossRef ADS Google scholar
[90]
G. Stefanucci, Bound states in ab initio approaches to quantum transport: A time-dependent formulation, Phys. Rev. B 75(19), 195115 (2007)
CrossRef ADS Google scholar
[91]
R. Kubo, S. J. Muyake, and N. Hashitsume, Solid State Physics, edited by H. Ehrenreich and D. Turnbull, New York: Academic, New York, Vol. 17, p. 269 (1965)
[92]
C. Cercignani, Theory and Application of the Boltzmann Equation, Edinburgh: Scottish Academic Press, 1975
[93]
H. Smith and H. H. Jensen, Transport Phenomena, Oxford: Clarendon, 1989
[94]
P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
[95]
S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys. 20(6), 948 (1958)
CrossRef ADS Google scholar
[96]
R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33(5), 1338 (1960)
CrossRef ADS Google scholar
[97]
P. Y. Yang and W. M. Zhang, Exact homogeneous Master equation for open quantum systems incorporating initial correlations, arXiv: 1605.08521 (2016)
[98]
H. L. Lai and W. M. Zhang, Non-Markovian decoherence dynamics of Majorana fermions (in preparation)
[99]
W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori, General non-Markovian dynamics of open quantum systems, Phys. Rev. Lett. 109(17), 170402 (2012)
CrossRef ADS Google scholar
[100]
X. L. Yin, M. W.-Y. Tu, P. Y. Lo, and W. M. Zhang, Localized state effect in quantum transport (in preparation)
[101]
S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. J. B. M. Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Towards a quantum representation of the ampere using single electron pumps, Nat. Commun. 3, 930 (2012)
CrossRef ADS Google scholar
[102]
P. Y. Lo, H. N. Xiong, and W. M. Zhang, Breakdown of Bose–Einstein distribution in photonic crystals, Sci. Rep. 5, 9423 (2015)
CrossRef ADS Google scholar
[103]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef ADS Google scholar
[104]
P. Pomorski, L. Pastewka, C. Roland, H. Guo, and J. Wang, Capacitance, induced charges, and bound states of biased carbon nanotube systems, Phys. Rev. B 69(11), 115418 (2004)
CrossRef ADS Google scholar
[105]
V. Vettchinkina, A. Kartsev, D. Karlsson, and C. Verdozzi, Interacting fermions in one-dimensional disordered lattices: Exploring localization and transport properties with lattice density-functional theories, Phys. Rev. B 87(11), 115117 (2013)
CrossRef ADS Google scholar
[106]
A. Dhar and D. Sen, Nonequilibrium Greens function formalism and the problem of bound states, Phys. Rev. B 73(8), 085119 (2006)
CrossRef ADS Google scholar
[107]
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
CrossRef ADS Google scholar
[108]
T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Coherent manipulation of electronic states in a double quantum dot, Phys. Rev. Lett. 91(22), 226804 (2003)
CrossRef ADS Google scholar
[109]
J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Fewelectron quantum dot circuit with integrated charge read out, Phys. Rev. B 67(16), 161308(R) (2003)
[110]
J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Manipulation of a single charge in a double quantum dot, Phys. Rev. Lett. 93(18), 186802 (2004)
CrossRef ADS Google scholar
[111]
J. Gorman, D. G. Hasko, and D. A. Williams, Chargequbit operation of an isolated double quantum dot, Phys. Rev. Lett. 95(9), 090502 (2005)
CrossRef ADS Google scholar
[112]
A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Triplet-singlet spin relaxation via nuclei in a double quantum dot, Nature 435(7044), 925 (2005)
CrossRef ADS Google scholar
[113]
J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots, Science 309(5744), 2180 (2005)
CrossRef ADS Google scholar
[114]
K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G. A. C. Jones, and D. A. Ritchie, Charge and spin state readout of a double quantum dot coupled to a resonator, Nano Lett. 10(8), 2789 (2010)
CrossRef ADS Google scholar
[115]
B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado- Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure, and A. T. Hunter, Coherent singlet-triplet oscillations in a silicon-based double quantum dot, Nature 481(7381), 344 (2012)
CrossRef ADS Google scholar
[116]
L. Fricke, M. Wulf, B. Kaestner, V. Kashcheyevs, J. Timoshenko, P. Nazarov, F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, T. Weimann, K. Pierz, and H. W. Schumacher, Counting statistics for electron capture in a dynamic quantum dot, Phys. Rev. Lett. 110(12), 126803 (2013)
CrossRef ADS Google scholar
[117]
Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, X. Wu, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Fast coherent manipulation of three-electron states in a double quantum dot, Nat. Commun. 5, 3020 (2014)
CrossRef ADS Google scholar
[118]
T. Fujisawa, T. Hayashi, and S. Sasaki, Time-dependent single-electron transport through quantum dots, Rep. Prog. Phys. 69(3), 759 (2006)
CrossRef ADS Google scholar
[119]
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79(4), 1217 (2007)
CrossRef ADS Google scholar
[120]
D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Quantum control and process tomography of a semiconductor quantum dot hybrid qubit, Nature 511(7507), 70 (2014)
CrossRef ADS Google scholar
[121]
Y. Wu, X. Li, L. M. Duan, D. G. Steel, and D. Gammon, Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot, Phys. Rev. Lett. 96(8), 087402 (2006)
CrossRef ADS Google scholar
[122]
S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby, Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization, Nat. Phys. 5(12), 903 (2009)
CrossRef ADS Google scholar
[123]
J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. Lu, A. C. Gossard, and C. M. Marcus, Self-consistent measurement and state tomography of an exchange-only spin qubit, Nat. Nanotechnol. 8(9), 654 (2013)
CrossRef ADS Google scholar
[124]
Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3), 485 (1959)
CrossRef ADS Google scholar
[125]
A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Coherent coupling of two quantum dots embedded in an Aharonov–Bohm interferometer, Phys. Rev. Lett. 87(25), 256802 (2001)
CrossRef ADS Google scholar
[126]
T. Hatano, M. Stopa, W. Izumida, T. Yamaguchi, T. Ota, and S. Tarucha, Gate-voltage dependence of inter dot coupling and Aharanov–Bohm oscillation in laterally coupled vertical double dot, Physica E 22(1–3), 534 (2004)
CrossRef ADS Google scholar
[127]
M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, S. E. Ulloa, W. Wegscheider, and M. Bichler, Magnetic-field-dependent transmission phase of a double-dot system in a quantum ring, Phys. Rev. Lett. 93(6), 066802 (2004)
CrossRef ADS Google scholar
[128]
D. Loss and E. V. Sukhorukov, Probing entanglement and nonlocality of electrons in a double-dot via transport and noise, Phys. Rev. Lett. 84(5), 1035 (2000)
CrossRef ADS Google scholar
[129]
K. Kang and S. Y. Cho, Tunable molecular resonances of a double quantum dot Aharonov–Bohm interferometer,J. Phys.: Condens. Matter 16(1), 117 (2004)
CrossRef ADS Google scholar
[130]
T. Kubo, Y. Tokura, T. Hatano, and S. Tarucha, Electron transport through Aharonov–Bohm interferometer with laterally coupled double quantum dots, Phys. Rev. B 74(20), 205310 (2006)
CrossRef ADS Google scholar
[131]
T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha, Aharonov–Bohm oscillations changed by indirect interdot tunneling via electrodes in parallelcoupled vertical double quantum dots, Phys. Rev. Lett. 106(7), 076801 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(4235 KB)

Accesses

Citations

Detail

Sections
Recommended

/