Tunable band structure and effective mass of disordered chalcopyrite
Ze-Lian Wang, Wen-Hui Xie, Yong-Hong Zhao
Tunable band structure and effective mass of disordered chalcopyrite
The band structure and effective mass of disordered chalcopyrite photovoltaic materials Cu1−xAgxGaX2 (X = S, Se) are investigated by density functional theory. Special quasirandom structures are used to mimic local atomic disorders at Cu/Ag sites. A local density plus correction method is adopted to obtain correct semiconductor band gaps for all compounds. The bandgap anomaly can be seen for both sulfides and selenides, where the gap values of Ag compounds are larger than those of Cu compounds. Band gaps can be modulated from 1.63 to 1.78 eV for Cu1−xAgxGaSe2, and from 2.33 to 2.64 eV for Cu1−xAgxGaS2. The band gap minima and maxima occur at around x= 0.5 and x= 1, respectively, for both sulfides and selenides. In order to show the transport properties of Cu1−xAgxGaX2, the effective mass is shown as a function of disordered Ag concentration. Finally, detailed band structures are shown to clarify the phonon momentum needed by the fundamental indirect-gap transitions. These results should be helpful in designing high-efficiency photovoltaic devices, with both better absorption and high mobility, by Ag-doping in CuGaX2.
disorder / electronic structure / effective mass
[1] |
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater. 13(9), 897 (2014)
CrossRef
ADS
Google scholar
|
[2] |
M. Liu, M. B. Johnston, and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501(7467), 395 (2013)
CrossRef
ADS
Google scholar
|
[3] |
H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, H. You, Y. Liu, and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science 345(6196), 542 (2014)
CrossRef
ADS
Google scholar
|
[4] |
S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Adv. Mater. 25(11), 1522 (2013)
CrossRef
ADS
Google scholar
|
[5] |
M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2(CIGS) nanocrystal “inks” for printable photovoltaics, J. Am. Chem. Soc. 130(49), 16770 (2008)
CrossRef
ADS
Google scholar
|
[6] |
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photon.: Res. Appl. 23(1), 1 (2015)
CrossRef
ADS
Google scholar
|
[7] |
S. Abermann, Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells, Sol. Energy 94, 37 (2013)
CrossRef
ADS
Google scholar
|
[8] |
T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system, J. Sol. Energy Eng. 133(4), 041014 (2011)
CrossRef
ADS
Google scholar
|
[9] |
B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B 37(17), 10244 (1988)
CrossRef
ADS
Google scholar
|
[10] |
X. Nie, S. H. Wei, and S. B. Zhang, Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides, Phys. Rev. Lett. 88(6), 066405 (2002)
CrossRef
ADS
Google scholar
|
[11] |
M. Cardona, Electron effective masses of InAs and GaAs as a function of temperature and doping, Phys. Rev. 121(3), 752 (1961)
CrossRef
ADS
Google scholar
|
[12] |
J. Pohl and K. Albe, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory, Phys. Rev. B 87(24), 245203 (2013)
CrossRef
ADS
Google scholar
|
[13] |
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125(22), 224106 (2006)
CrossRef
ADS
Google scholar
|
[14] |
M. S.Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34(8), 5390 (1986)
CrossRef
ADS
Google scholar
|
[15] |
F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
CrossRef
ADS
Google scholar
|
[16] |
J. Srour, M. Badawi, F. El Haj Hassan, and A. V. Postnikov, Crystal structure and energy bands of (Ga/In)Se and Cu(In,Ga)Se2 semiconductors in comparison, Phys. Status Solidi B Basic Res. 253(8), 1472 (2016)
CrossRef
ADS
Google scholar
|
[17] |
Semiconductors: Data Handbook, 3rd Ed., edited by O. Madelung, Berlin: Springer, 2014
|
[18] |
S. Chen, X. G. Gong, and S. H. Wei, Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X= S and Se) and their alloys, Phys. Rev. B 75(20), 205209 (2007)
CrossRef
ADS
Google scholar
|
[19] |
H. Mirhosseini, H. Kiss, and C. Felser, Behavior of S 3 grain boundaries in CuInSe2 and CuGaSe2 photovoltaic absorbers revealed by first-principles hybrid functional calculations, Phys. Rev. Appl. 4(6), 064005 (2015)
CrossRef
ADS
Google scholar
|
[20] |
A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65(3), 353 (1990)
CrossRef
ADS
Google scholar
|
[21] |
S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Electronic properties of random alloys: Special quasirandom structures, Phys. Rev. B 42(15), 9622 (1990)
CrossRef
ADS
Google scholar
|
[22] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[23] |
D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 566 (1980)
CrossRef
ADS
Google scholar
|
[24] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[25] |
T. Maeda and T. Wada, First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2, J. Phys. Chem. Solids 66(11), 1924 (2005)
CrossRef
ADS
Google scholar
|
[26] |
G. Boyd, H. Kasper, and J. McFee, Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients, IEEE J. Quantum Electron. 7(12), 563 (1971)
CrossRef
ADS
Google scholar
|
[27] |
B. Tell and H. M. Kasper, Optical and electrical properties of AgGaS2 and AgGaSe2, Phys. Rev. B 4(12), 4455 (1971)
CrossRef
ADS
Google scholar
|
[28] |
J. Taylor, H. Guo, and J. Wang, Ab initiomodeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
CrossRef
ADS
Google scholar
|
[29] |
Y. B. Hu, Y. H. Zhao, and X. F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
CrossRef
ADS
Google scholar
|
[30] |
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
CrossRef
ADS
Google scholar
|
[31] |
S. H. Wei and A. Zunger, Fingerprints of CuPt ordering in III-V semiconductor alloys: Valence-band splittings, band-gap reduction, and X-ray structure factors, Phys. Rev. B 57(15), 8983 (1998)
CrossRef
ADS
Google scholar
|
[32] |
B. Tell and P. M. Bridenbaugh, Aspects of the band structure of CuGaS2 and CuGaSe2, Phys. Rev. B 12(8), 3330 (1975)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |