Wave-function approach to Master equations for quantum transport and measurement

Shmuel Gurvitz

PDF(728 KB)
PDF(728 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 120303. DOI: 10.1007/s11467-016-0638-6
REVIEW ARTICLE
REVIEW ARTICLE

Wave-function approach to Master equations for quantum transport and measurement

Author information +
History +

Abstract

This paper presents a comprehensive review of the wave-function approach for derivation of the numberresolved Master equations, used for description of transport and measurement in mesoscopic systems. The review contains important amendments, clarifying subtle points in derivation of the Master equations and their validity. This completes the earlier works on the subject. It is demonstrated that the derivation does not assume weak coupling with the environment and reservoirs, but needs only high bias condition. This condition is very essential for validity of the Markovian Master equations, widely used for a phenomenological description of different physical processes.

Keywords

mesoscopic systems / quantum transport / Master equation / continuous measurement

Cite this article

Download citation ▾
Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement. Front. Phys., 2017, 12(4): 120303 https://doi.org/10.1007/s11467-016-0638-6

References

[1]
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
CrossRef ADS Google scholar
[2]
Y. Imry, Introduction to Mesoscopic Physics, Oxford: Oxford University Press, 1997
[3]
Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience, Cambridge: Cambridge University Press, 2009
CrossRef ADS Google scholar
[4]
F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Single-electron charging in double and triple quantum dots with tunable coupling, Phys. Rev. Lett. 75(4), 705 (1995)
CrossRef ADS Google scholar
[5]
L. I. Glazman and K. A. Matveev, Coulomb correlations in the tunneling through resonance centers, Pis’ma Zh. Eksp. Teor. Fiz. 48(7), 403 (1988) [JETP Lett. 48(7), 445 (1988)]
[6]
D. V. Averin and A. N. Korotkov, Influence of discrete energy spectrum on correlated single-electron tunneling via a mezoscopically small metal granule, Zh. Eksp. Teor. Fiz. 97(5), 1661 (1990) [Sov. Phys.-JETP 70, 937 (1990)]
[7]
C. W. J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B 44(4), 1646 (1991)
CrossRef ADS Google scholar
[8]
S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, The Pauli principle and quantum transport, Mod. Phys. Lett. B 8(21–22), 1377 (1994)
CrossRef ADS Google scholar
[9]
J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins, Current and rate equation for resonant tunneling, Phys. Rev. B 47(8), 4603 (1993)
CrossRef ADS Google scholar
[10]
Yu. V. Nazarov, Quantum interference, tunnel junctions and resonant tunneling interferometer, Physica B 189(1–4), 57 (1993)
CrossRef ADS Google scholar
[11]
S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Interference effects in resonant tunneling and the Pauli principle, Phys. Lett. A 212(1–2), 91 (1996)
CrossRef ADS Google scholar
[12]
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, New York: Wiley, 1992
[13]
S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
CrossRef ADS Google scholar
[14]
S. Kohler, J. Lehmann, and P. Hänggi, Driven quantum transport on the nanoscale, Phys. Rep. 406(6), 379 (2005)
CrossRef ADS Google scholar
[15]
V. May and O. Kühn, Optical field control of charge transmission through a molecular wire. I. Generalized master equation description, Phys. Rev. B 77(11), 115439 (2008)
CrossRef ADS Google scholar
[16]
M. W. Y. Tu, and W. M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Phys. Rev. B 78(23), 235311 (2008)
CrossRef ADS Google scholar
[17]
X. Q. Li, Number-resolved master equation approach to quantum measurement and quantum transport, Front. Phys. 11(4), 110307 (2016), and references therein
CrossRef ADS Google scholar
[18]
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
CrossRef ADS Google scholar
[19]
S. A. Gurvitz, Measurements with a noninvasive detector and dephasing mechanism, Phys. Rev. B 56, 15215 (1997)
CrossRef ADS Google scholar
[20]
S. A. Gurvitz, Rate equations for quantum transport in multidot systems, Phys. Rev. 57(11), 6602 (1998)
CrossRef ADS Google scholar
[21]
B. Elattari, and S. A. Gurvitz, Influence of measurement on the lifetime and the linewidth of unstable systems, Phys. Rev. A 62(3), 032102 (2000)
CrossRef ADS Google scholar
[22]
L. Xu, Y. Cao, X. Q. Li, Y. J. Yan, and S. Gurvitz, Quantum transfer through a non-Markovian environment under frequent measurements and Zeno effect, Phys. Rev. A 90(2), 022108 (2014)
CrossRef ADS Google scholar
[23]
S. Gurvitz, Does the measurement take place when nobody observes it? Fortschr. Phys. (in press), arXiv: 1605.05553
[24]
T. H. Stoof, and Yu. V. Nazarov, Time-dependent resonant tunneling via two discrete states, Phys. Rev. B 53(3), 1050 (1996)
CrossRef ADS Google scholar
[25]
A. Wolf, G. De Chiara, E. Kajari, E. Lutz, and G. Morigi, Entangling two distant oscillators with a quantum reservoir, Europhys. Lett. 95(6), 60008 (2011)
CrossRef ADS Google scholar
[26]
J. Ping, Y. Ye, L. Xu, X. Q. Li, Y. J. Yan, and S. Gurvitz, Undetectable quantum transfer through a continuum, Phys. Lett. A 377(9), 676 (2013)
CrossRef ADS Google scholar
[27]
Y. Ye, Yu. Cao, X. Q. Li, and S. Gurvitz, Decoherence and the retrieval of lost information, Phys. Rev. B 84(24), 245311 (2011)
CrossRef ADS Google scholar
[28]
S. A. Gurvitz, Lapse of transmission phase and electron molecules in quantum dots, Phys. Rev. B 77, 201302(R) (2008)
[29]
S. A. Gurvitz and D. Mozyrsky, Quantum mechanical approach to decoherence and relaxation generated by fluctuating environment, Phys. Rev. B 77(7), 075325 (2008)
CrossRef ADS Google scholar
[30]
S. A. Gurvitz, Quantum interference in resonant tunneling and single spin measurements, IEEE Trans. Nano Technol. 4(1), 45 (2005)
CrossRef ADS Google scholar
[31]
S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels, Phys. Rev. B 72(20), 205341 (2005)
CrossRef ADS Google scholar
[32]
M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Measurements of Coulomb blockade with a noninvasive voltage probe, Phys. Rev. Lett. 70(9), 1311 (1993)
CrossRef ADS Google scholar
[33]
E. Buks, R. Shuster, M. Heiblum, D. Mahalu, and V. Umansky, Dephasing in electron interference by a “which-path” detector, Nature 391, 871 (1998)
CrossRef ADS Google scholar
[34]
B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quantum theory, J. Math. Phys. 18(4), 756 (1977)
CrossRef ADS Google scholar
[35]
C. Presilla, R. Onofrio, and U. Tambini, Measurement quantum mechanics and experiments on quantum Zeno effect, Ann. Phys. 248(1), 95 (1996)
CrossRef ADS Google scholar
[36]
A. G. Kofman and G. Kurizki, Quantum Zeno effect on atomic excitation decay in resonators, Phys. Rev. A 54(5), R3750 (1996)
CrossRef ADS Google scholar
[37]
A. G. Kofman and G. Kurizki, Acceleration of quantum decay processes by frequent observations, Nature 405(6786), 546 (2000)
CrossRef ADS Google scholar
[38]
S. Gurvitz, Single-electron approach for time-dependent electron transport, Phys. Scr. T165, 014013 (2015)
CrossRef ADS Google scholar
[39]
S. Gurvitz, A. Aharony, and O. Entin-Wohlman, Temporal evolution of resonant transmission under telegraph noise, Phys. Rev. 94(7), 075437 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(728 KB)

Accesses

Citations

Detail

Sections
Recommended

/