Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

Yupeng Li, Zhen Wang, Pengshan Li, Xiaojun Yang, Zhixuan Shen, Feng Sheng, Xiaodong Li, Yunhao Lu, Yi Zheng, Zhu-An Xu

PDF(1187 KB)
PDF(1187 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127205. DOI: 10.1007/s11467-016-0636-8
REVIEW ARTICLE
REVIEW ARTICLE

Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

Author information +
History +

Abstract

Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.

Keywords

Weyl semimetals / chiral anomaly / negative magnetoresistance / extrinsic effects

Cite this article

Download citation ▾
Yupeng Li, Zhen Wang, Pengshan Li, Xiaojun Yang, Zhixuan Shen, Feng Sheng, Xiaodong Li, Yunhao Lu, Yi Zheng, Zhu-An Xu. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects. Front. Phys., 2017, 12(3): 127205 https://doi.org/10.1007/s11467-016-0636-8

References

[1]
P. R. Wallace, The band theory of graphite, Phys. Rev. 71(9), 622 (1947)
CrossRef ADS Google scholar
[2]
H. Weyl, Elektron und gravitation. I, Z. Phys. 56(5–6), 330 (1929)
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
CrossRef ADS Google scholar
[4]
Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[5]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[6]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[7]
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
CrossRef ADS Google scholar
[8]
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef ADS Google scholar
[9]
L. Tian, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14, 280 (2015)
[10]
X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef ADS Google scholar
[11]
H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
CrossRef ADS Google scholar
[12]
S. Huang, S. Y. Xu, I. Belopolski, C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)
CrossRef ADS Google scholar
[13]
G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B.K. Wang, C.-C. Lee, H.-T. Jeng, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Topological nodalline fermions in the non-centrosymmetric superconductor compound PbTaSe2, arXiv: 1505.03069 (2015)
[14]
G. B. Halász and L. Balents, Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B 85(3), 035103 (2012)
CrossRef ADS Google scholar
[15]
S.Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.C. Lee, S.M. Huang, B. K. Wang, A. Bansil, H.T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11(9), 748 (2015)
CrossRef ADS Google scholar
[16]
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
CrossRef ADS Google scholar
[17]
B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding, Observation of Fermiarc spin texture in TaAs, Phys. Rev. Lett. 115, 217601 (2015)
CrossRef ADS Google scholar
[18]
S. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S.M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
CrossRef ADS Google scholar
[19]
C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: An exotic compensated semimetal, arXiv: 1502.00251 (2015)
[20]
X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. M. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral anomaly induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
CrossRef ADS Google scholar
[21]
C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. H. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11(8), 645 (2015)
CrossRef ADS Google scholar
[22]
Z. Wang, Y. Zheng, Z. X. Shen, Y. Zhou, X. J. Yang, Y. P. Li, C. M. Feng, and Z. A. Xu, Helicity protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B 93, 121112(R) (2016)
[23]
A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)
CrossRef ADS Google scholar
[24]
P. Hosur and X. L. Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys. 14(9– 10), 857 (2013)
[25]
I. A. Luk’yanchuk and Y. Kopelevich, Phase analysis of quantum oscillation in graphite, Phys. Rev. Lett. 93(16), 166402 (2004)
CrossRef ADS Google scholar
[26]
H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130(6), 389 (1983)
CrossRef ADS Google scholar
[27]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
CrossRef ADS Google scholar
[28]
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topoogical insulators: Adler–Bell– Jackiw anomaly in transport phenomena, Phys. Rev. Lett. 111(24), 246603 (2013)
CrossRef ADS Google scholar
[29]
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Observation of the chiral magnetic effect in ZrTe5, arXiv: 1412.6543 (2014)
[30]
F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. Donizeth dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP, arXiv: 1506.06577 (2015)
[31]
X. J. Yang, Y. P. Li, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)
[32]
M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater. 15(11), 1161 (2016)
CrossRef ADS Google scholar
[33]
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88(10), 104412 (2013)
CrossRef ADS Google scholar
[34]
A. A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, Phys. Rev. B 91(24), 245157 (2015)
CrossRef ADS Google scholar
[35]
B. Z. Spivak and A. V. Andreev, Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals, Phys. Rev. B 93(8), 085107 (2016)
CrossRef ADS Google scholar
[36]
J. S. Hu, T. F. Rosenbaum, and J. B. Betts, Current jets, disorder, and linear magnetoresistance in the silver chalcogenides, Phys. Rev. Lett. 95(18), 186603 (2005)
CrossRef ADS Google scholar
[37]
J. S. Hu, M. M. Parish, and T. F. Rosenbaum, Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation, Phys. Rev. B 75(21), 214203 (2007)
CrossRef ADS Google scholar
[38]
R. D. dos Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance, arXiv: 1606.03389 (2016)
[39]
C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Z. Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)
CrossRef ADS Google scholar
[40]
T. Besara, D. A. Rhodes, K. W. Chen, S. Das, Q. R. Zhang, J. F. Sun, B. Zeng, Y. Xin, L. Balicas, R. E. Baumbach, E. Manousakis, D. J. Singh, and T. Siegrist, Coexistence of Weyl physics and planar defects in semimetals TaP and TaAs, Phys. Rev. B 93, 245152 (2016), arXiv: 1606.05178
[41]
J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2, Phys. Rev. Lett. 115(16), 166601 (2015)
CrossRef ADS Google scholar
[42]
K. Y. Bliokh, Weak antilocalization of ultrarelativistic fermions, Phys. Lett. A 344(2–4), 127 (2005)
CrossRef ADS Google scholar
[43]
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spinorbital interaction and magnetoresistance in the twodimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)
CrossRef ADS Google scholar
[44]
H. Wang, H. Liu, C. Z. Chang, H. Zuo, Y. Zhao, Y. Sun, Z. Xia, K. He, X. Ma, X. C. Xie, Q. K. Xue, and J. Wang, Crossover between weak antilocalization and weak localization of bulk states in ultrathin Bi2Se3 films, Sci. Rep. 4, 5817 (2014)
CrossRef ADS Google scholar
[45]
C. J. Lin, X. Y. He, J. Liao, X. X. Wang, V. Sacksteder IV, W. M. Yang, T. Guan, Q. M. Zhang, L. Gu, G. Y. Zhang, C. G. Zeng, X. Dai, K. H. Wu, and Y. Q. Li, Parallel field magnetoresistance in topological insulator thin films, Phys. Rev. B 88, 041307(R) (2013)
[46]
A. Kawabata, Theory of negative magnetoresistance i. application to heavily doped semiconductors, J. Phys. Soc. Jpn. 49(2), 628 (1980)
CrossRef ADS Google scholar
[47]
Y. Kopelevich, J. H. S. Torres, R. R. da Silva, F. Mrowka, H. Kempa, and P. Esquinazi, Reentrant metallic behavior of graphite in the quantum limit, Phys. Rev. Lett. 90(15), 156402 (2003)
CrossRef ADS Google scholar
[48]
B. Fauqué, B. Vignolle, C. Proust, J. P. Issi, and K. Behnia, Electronic instability in bismuth far beyond the quantum limit, New J. Phys. 11(11), 113012 (2009)
CrossRef ADS Google scholar
[49]
Y. P. Li, Z. Wang, Y. H. Lu, X. J. Yang, Z. X. Shen, F. Sheng, C. Feng, Y. Zheng, and Z.-A. Xu, Negative magnetoresistance in topological semimetals of transitionmetal dipnictides with non-trivial Z2 indices, arXiv: 1603.04056 (2016)
[50]
B. Shen, X. Y. Deng, G. Kotliar, and N. Ni, Fermi surface topology and negative longitudinal magnetoresistance observed in centrosymmetric NbAs2 semimetal, arXiv: 1602.01795 (2016)
[51]
Y. K. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, and F. Ronning, Anomalous magnetoresistance in TaAs2, arXiv: 1601.05524 (2016)
[52]
Z. Wang, Y. P. Li, Y. H. Lu, Z. X. Shen, F. Sheng, C. M. Feng, Y. Zheng, and Z. A. Xu, Topological phase transition induced extreme magnetoresistance in TaSb2, arXiv: 1603.01717 (2016)
[53]
V. K. Dugaev and D. E. Khmelnitskii, Magnetoresistance of metal films with low impurity concentration in a parallel magnetic field, Sov. Phys. JETP 59, 1038 (1984)
[54]
A. K. Mitchell and L. Fritz, Kondo effect in threedimensional Dirac and Weyl systems, Phys. Rev. B 92, 121109(R) (2015)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1187 KB)

Accesses

Citations

Detail

Sections
Recommended

/