Explosive synchronization enhances selectivity: Example of the cochlea

Chao-Qing Wang, Alain Pumir, Nicolas B. Garnier, Zong-Hua Liu

PDF(606 KB)
PDF(606 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128901. DOI: 10.1007/s11467-016-0634-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Explosive synchronization enhances selectivity: Example of the cochlea

Author information +
History +

Abstract

Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.

Keywords

cochlea / frequency selectivity / periodical forcing / explosive synchronization

Cite this article

Download citation ▾
Chao-Qing Wang, Alain Pumir, Nicolas B. Garnier, Zong-Hua Liu. Explosive synchronization enhances selectivity: Example of the cochlea. Front. Phys., 2017, 12(5): 128901 https://doi.org/10.1007/s11467-016-0634-x

References

[1]
L. Robles and M. A. Ruggero, Mechanics of the mammalian cochlea, Physiol. Rev. 81, 1305 (2001)
[2]
A. Hudspeth, Hearing, in: Principles of Neural Science, 4th Ed., McGraw-Hill, 2000
[3]
See, for example, J. O. Pickles, An Introduction to the Physiology of Hearing, 2nd Ed., Academic Press, 1988
[4]
S. S. Narayan, A. N. Temchin, A. Recio, and M. A. Ruggero, Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae, Science 282(5395), 1882 (1998)
CrossRef ADS Google scholar
[5]
J. F. Ashmore, G. S. Géléoc, and L. Harbott, Molecular mechanisms of sound amplification in the mammalian cochlea, Proc. Natl. Acad. Sci. USA 97(22), 11759 (2000)
CrossRef ADS Google scholar
[6]
K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci. USA 97(22), 11751 (2000)
CrossRef ADS Google scholar
[7]
D. T. Kemp, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64(5), 1386 (1978)
CrossRef ADS Google scholar
[8]
R. Probst, B. L. Lonsbury-Martin, G. K. Martin, B. L. Lonsburymartin, and G. K. Martin, A review of otoacoustic emissions, J. Acoust. Soc. Am. 89(5), 2027 (1991)
CrossRef ADS Google scholar
[9]
V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, Essential nonlinearities in hearing, Phys. Rev. Lett. 84(22), 5232 (2000)
CrossRef ADS Google scholar
[10]
S. Camalet, T. Duke, F. Jüicher, and J. Prost, Auditory sensitivity provided by self-tuned critical oscillations of hair cells, Proc. Natl. Acad. Sci. USA 97(7), 3183 (2000)
CrossRef ADS Google scholar
[11]
J. Cartwright, D. González, and O. Piro, Nonlinear dynamics of the perceived pitch of complex sounds, Phys. Rev. Lett. 82(26), 5389 (1999)
CrossRef ADS Google scholar
[12]
K. A. Montgomery, M. Silber, and S. A. Solla, Amplification in the auditory periphery: The effect of coupling tuning mechanisms, Phys. Rev. E 75(5), 051924 (2007)
CrossRef ADS Google scholar
[13]
M. O. Magnasco, A wave traveling over a Hopf instability shapes the cochlear tuning curve, Phys. Rev. Lett. 90(5), 058101 (2003)
CrossRef ADS Google scholar
[14]
T. Duke and F. Jülicher, Active traveling wave in the cochlea, Phys. Rev. Lett. 90(15), 158101 (2003)
CrossRef ADS Google scholar
[15]
P. L. Boyland, Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals, Commun. Math. Phys. 106(3), 353 (1986)
CrossRef ADS Google scholar
[16]
A. Kern and R. Stoop, Essential role of couplings between hearing nonlinearities, Phys. Rev. Lett. 91(12), 128101 (2003)
CrossRef ADS Google scholar
[17]
R. Stoop and A. Kern, Two-tone suppression and combination tone generation as computations performed by the hopf cochlea, Phys. Rev. Lett. 93(26), 8103 (2004)
CrossRef ADS Google scholar
[18]
K. Dierkes, B. Lindner, and F. Jüicher, Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles, Proc. Natl. Acad. Sci. USA 105(48), 18669 (2008)
CrossRef ADS Google scholar
[19]
A. Vilfan, and T. Duke, Frequency clustering in spontaneous otoacoustic emissions from a Lizard’s ear, Biophys. J. 95(10), 4622 (2008)
CrossRef ADS Google scholar
[20]
M. Gelfand, O. Piro, M. O. Magnasco, and A. J. Hudspeth, Hudspeth a J. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the Tokay Gecko’s cochlea, PLoS One 5(6), e11116 (2010)
CrossRef ADS Google scholar
[21]
H. P. Wit and P. van Dijk, Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators? J. Acoust. Soc. Am. 132(2), 918 (2012)
CrossRef ADS Google scholar
[22]
Z. Liu, B. Li, and Y.-C. Lai, Enhancing mammalian hearing by a balancing between spontaneous otoacoustic emissions and spatial coupling, Europhys. Lett. 98(2), 20005 (2012)
CrossRef ADS Google scholar
[23]
G. A. Manley, Cochlear mechanisms from a phylogenetic viewpoint, Proc. Natl. Acad. Sci. USA 97(22), 11736 (2000)
CrossRef ADS Google scholar
[24]
C. Köppl, Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa, Hear. Res. 35(2–3), 209 (1988)
CrossRef ADS Google scholar
[25]
J. Gómez-Gardenes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef ADS Google scholar
[26]
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendina- Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
CrossRef ADS Google scholar
[27]
P. Ji, T. K. D. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef ADS Google scholar
[28]
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
CrossRef ADS Google scholar
[29]
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
CrossRef ADS Google scholar
[30]
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef ADS Google scholar
[31]
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
CrossRef ADS Google scholar
[32]
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
CrossRef ADS Google scholar
[33]
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef ADS Google scholar
[34]
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5, 18235 (2015)
CrossRef ADS Google scholar
[35]
P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D 52(2–3), 293 (1991)
CrossRef ADS Google scholar
[36]
C. Wang and N. Garnier, Continuous and discontinuous transitions to synchronization, arXiv: 1609.05584
[37]
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef ADS Google scholar
[38]
P. D. Welsby, The 12, 24, or is it 26 cranial nerves? Postgrad. Med. J. 80(948), 602 (2004)
CrossRef ADS Google scholar
[39]
L. Fredrickson-Hemsing, S. Ji, R. Bruinsma, and D. Bozovic, Mode-locking dynamics of hair cells of the inner ear, Phys. Rev. E 86(2), 21915 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(606 KB)

Accesses

Citations

Detail

Sections
Recommended

/