Explosive synchronization enhances selectivity: Example of the cochlea
Chao-Qing Wang, Alain Pumir, Nicolas B. Garnier, Zong-Hua Liu
Explosive synchronization enhances selectivity: Example of the cochlea
Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.
cochlea / frequency selectivity / periodical forcing / explosive synchronization
[1] |
L. Robles and M. A. Ruggero, Mechanics of the mammalian cochlea, Physiol. Rev. 81, 1305 (2001)
|
[2] |
A. Hudspeth, Hearing, in: Principles of Neural Science, 4th Ed., McGraw-Hill, 2000
|
[3] |
See, for example, J. O. Pickles, An Introduction to the Physiology of Hearing, 2nd Ed., Academic Press, 1988
|
[4] |
S. S. Narayan, A. N. Temchin, A. Recio, and M. A. Ruggero, Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae, Science 282(5395), 1882 (1998)
CrossRef
ADS
Google scholar
|
[5] |
J. F. Ashmore, G. S. Géléoc, and L. Harbott, Molecular mechanisms of sound amplification in the mammalian cochlea, Proc. Natl. Acad. Sci. USA 97(22), 11759 (2000)
CrossRef
ADS
Google scholar
|
[6] |
K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci. USA 97(22), 11751 (2000)
CrossRef
ADS
Google scholar
|
[7] |
D. T. Kemp, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64(5), 1386 (1978)
CrossRef
ADS
Google scholar
|
[8] |
R. Probst, B. L. Lonsbury-Martin, G. K. Martin, B. L. Lonsburymartin, and G. K. Martin, A review of otoacoustic emissions, J. Acoust. Soc. Am. 89(5), 2027 (1991)
CrossRef
ADS
Google scholar
|
[9] |
V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, Essential nonlinearities in hearing, Phys. Rev. Lett. 84(22), 5232 (2000)
CrossRef
ADS
Google scholar
|
[10] |
S. Camalet, T. Duke, F. Jüicher, and J. Prost, Auditory sensitivity provided by self-tuned critical oscillations of hair cells, Proc. Natl. Acad. Sci. USA 97(7), 3183 (2000)
CrossRef
ADS
Google scholar
|
[11] |
J. Cartwright, D. González, and O. Piro, Nonlinear dynamics of the perceived pitch of complex sounds, Phys. Rev. Lett. 82(26), 5389 (1999)
CrossRef
ADS
Google scholar
|
[12] |
K. A. Montgomery, M. Silber, and S. A. Solla, Amplification in the auditory periphery: The effect of coupling tuning mechanisms, Phys. Rev. E 75(5), 051924 (2007)
CrossRef
ADS
Google scholar
|
[13] |
M. O. Magnasco, A wave traveling over a Hopf instability shapes the cochlear tuning curve, Phys. Rev. Lett. 90(5), 058101 (2003)
CrossRef
ADS
Google scholar
|
[14] |
T. Duke and F. Jülicher, Active traveling wave in the cochlea, Phys. Rev. Lett. 90(15), 158101 (2003)
CrossRef
ADS
Google scholar
|
[15] |
P. L. Boyland, Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals, Commun. Math. Phys. 106(3), 353 (1986)
CrossRef
ADS
Google scholar
|
[16] |
A. Kern and R. Stoop, Essential role of couplings between hearing nonlinearities, Phys. Rev. Lett. 91(12), 128101 (2003)
CrossRef
ADS
Google scholar
|
[17] |
R. Stoop and A. Kern, Two-tone suppression and combination tone generation as computations performed by the hopf cochlea, Phys. Rev. Lett. 93(26), 8103 (2004)
CrossRef
ADS
Google scholar
|
[18] |
K. Dierkes, B. Lindner, and F. Jüicher, Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles, Proc. Natl. Acad. Sci. USA 105(48), 18669 (2008)
CrossRef
ADS
Google scholar
|
[19] |
A. Vilfan, and T. Duke, Frequency clustering in spontaneous otoacoustic emissions from a Lizard’s ear, Biophys. J. 95(10), 4622 (2008)
CrossRef
ADS
Google scholar
|
[20] |
M. Gelfand, O. Piro, M. O. Magnasco, and A. J. Hudspeth, Hudspeth a J. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the Tokay Gecko’s cochlea, PLoS One 5(6), e11116 (2010)
CrossRef
ADS
Google scholar
|
[21] |
H. P. Wit and P. van Dijk, Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators? J. Acoust. Soc. Am. 132(2), 918 (2012)
CrossRef
ADS
Google scholar
|
[22] |
Z. Liu, B. Li, and Y.-C. Lai, Enhancing mammalian hearing by a balancing between spontaneous otoacoustic emissions and spatial coupling, Europhys. Lett. 98(2), 20005 (2012)
CrossRef
ADS
Google scholar
|
[23] |
G. A. Manley, Cochlear mechanisms from a phylogenetic viewpoint, Proc. Natl. Acad. Sci. USA 97(22), 11736 (2000)
CrossRef
ADS
Google scholar
|
[24] |
C. Köppl, Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa, Hear. Res. 35(2–3), 209 (1988)
CrossRef
ADS
Google scholar
|
[25] |
J. Gómez-Gardenes, S. Gómez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef
ADS
Google scholar
|
[26] |
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendina- Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
CrossRef
ADS
Google scholar
|
[27] |
P. Ji, T. K. D. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef
ADS
Google scholar
|
[28] |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
CrossRef
ADS
Google scholar
|
[29] |
I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldú, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)
CrossRef
ADS
Google scholar
|
[30] |
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef
ADS
Google scholar
|
[31] |
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4, 5200 (2014)
CrossRef
ADS
Google scholar
|
[32] |
X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)
CrossRef
ADS
Google scholar
|
[33] |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef
ADS
Google scholar
|
[34] |
T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5, 18235 (2015)
CrossRef
ADS
Google scholar
|
[35] |
P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D 52(2–3), 293 (1991)
CrossRef
ADS
Google scholar
|
[36] |
C. Wang and N. Garnier, Continuous and discontinuous transitions to synchronization, arXiv: 1609.05584
|
[37] |
J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
CrossRef
ADS
Google scholar
|
[38] |
P. D. Welsby, The 12, 24, or is it 26 cranial nerves? Postgrad. Med. J. 80(948), 602 (2004)
CrossRef
ADS
Google scholar
|
[39] |
L. Fredrickson-Hemsing, S. Ji, R. Bruinsma, and D. Bozovic, Mode-locking dynamics of hair cells of the inner ear, Phys. Rev. E 86(2), 21915 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |