Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model

Fan Zhong

PDF(1360 KB)
PDF(1360 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 126402. DOI: 10.1007/s11467-016-0632-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model

Author information +
History +

Abstract

Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar φ4 model, below its critical temperature and near the instability points. Finitetime scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang–Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.

Keywords

first-order phase transitions / renormalization group theory / φ3 theory / scaling and universality / instability exponents / Yang–Lee edge singularity / finite-time scaling / corrections to scaling / scalar model / dynamics / hysteresis

Cite this article

Download citation ▾
Fan Zhong. Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model. Front. Phys., 2017, 12(5): 126402 https://doi.org/10.1007/s11467-016-0632-z

References

[1]
P. Ehrenfest, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Comm. Kamerlingh Onnes Lab., University of Leiden, Suppl. 75b (1933) [Proc. Acad. Sci. Amsterdam 36, 153 (1933)]
[2]
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
CrossRef ADS Google scholar
[3]
T. Andrews, The Bakerian lecture: On the continuity of the gaseous and liquid states of matter, Philos. Trans. R. Soc. Lond. 159(0), 575 (1869)
CrossRef ADS Google scholar
[4]
K. G. Wilson, Renormalization group and critical phenomena (I), Phys. Rev. B 4(9), 3174 (1971)
CrossRef ADS Google scholar
[5]
K. G. Wilson, Renormalization group and critical phenomena (II): Phase-space cell analysis of critical behavior, Phys. Rev. B 4(9), 3184 (1971)
CrossRef ADS Google scholar
[6]
K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. C 12(2), 75 (1974)
CrossRef ADS Google scholar
[7]
M. E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46(4), 597 (1974)
CrossRef ADS Google scholar
[8]
H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358 (1999)
CrossRef ADS Google scholar
[9]
For a recent review, see, M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past, present, and future, Rev. Mod. Phys. 79(1), 1 (2007)
CrossRef ADS Google scholar
[10]
J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
CrossRef ADS Google scholar
[11]
J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
[12]
K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
CrossRef ADS Google scholar
[13]
P. G. Debenedetti, Metastable Liquids, Princeton: Princeton University, 1996
[14]
J. van der Waals, On the continuity of the gaseous and liquid state, Thesis, Leiden, 1873 (unpublished)
[15]
J. C. Maxwell, Scientific Papers, New York: Dover, 1965, p. 425
[16]
J. W. Gibbs, The Collective Works of J. Willard Gibbs, Vol. 1, New York: Longman, 1931
[17]
J. D. Gunton, Homogeneous nucleation, J. Stat. Phys. 95(5/6), 903 (1999)
CrossRef ADS Google scholar
[18]
D. W. Oxtoby, Nucleation of first-order phase transitions, Acc. Chem. Res. 31(2), 91 (1998)
CrossRef ADS Google scholar
[19]
R. B. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter 19, 033101 (2007)
CrossRef ADS Google scholar
[20]
K. Binder and P. Fratzl, in: Phase Transformations in Materials, <Eds/>. G. Kostorz, Weinheim: Wiley, 2001
[21]
J. S. Langer, M. Baron, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11(4), 1417 (1975)
CrossRef ADS Google scholar
[22]
K. Binder, “Clusters” in the Ising model, metastable states and essential singularity, Ann. Phys. 98(2), 390 (1976)
CrossRef ADS Google scholar
[23]
K. Binder and D. Stauffer, Statistical theory of nucleation, condensation and coagulation, Adv. Phys. 25(4), 343 (1976)
CrossRef ADS Google scholar
[24]
F. Zhong, Instability points and spinodal points, 2010 (unpublished)
[25]
B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory, Phys. Rev. Lett. 35(8), 477 (1975)
CrossRef ADS Google scholar
[26]
M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26(5), 2507 (1982)
CrossRef ADS Google scholar
[27]
A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994), reprinted as Adv. Phys. 51, 481 (2002), and references therein
[28]
J. Marro, J. L. Lebowitz, and M. H. Kalos, Computer simulation of the time evolution of a quenched model alloy in the nucleation region, Phys. Rev. Lett. 43(4), 282 (1979)
CrossRef ADS Google scholar
[29]
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
CrossRef ADS Google scholar
[30]
J. X. Zhang and X. J. Li, A new method for interface dynamic investigation in solid state phase transformations, Acta Sci. Nat. Uni. Sun. 2, 45 (1985)
[31]
M. Rao, H. R. Krishnamurthy, and R. Pandit, Hysteresis in model spin systems, J. Phys.: Condens. Matter 1(45), 9061 (1989)
CrossRef ADS Google scholar
[32]
M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42(1), 856 (1990)
CrossRef ADS Google scholar
[33]
F. Zhong, J. X. Zhang, and G. G. Siu, Dynamic scaling of hysteresis in a linearly driven system, J. Phys.: Condens. Matter 6(38), 7785 (1994)
CrossRef ADS Google scholar
[34]
F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
CrossRef ADS Google scholar
[35]
F. Zhong, J. X. Zhang, and X. Liu, Scaling of hysteresis in the Ising model and cell-dynamical systems in a linearly varying external field, Phys. Rev. E 52(2), 1399 (1995)
CrossRef ADS Google scholar
[36]
J. X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B 52(1), 268 (1995), and references therein
CrossRef ADS Google scholar
[37]
J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO2 ceramics by internal-friction measurements, Phys. Rev. B 52(1), 278 (1995)
CrossRef ADS Google scholar
[38]
J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids, Solid State Commun. 97(10), 847 (1996)
CrossRef ADS Google scholar
[39]
K. Chakrabarti and M. Acharyya, Dynamic transitions and hysteresis, Rev. Mod. Phys. 71(3), 847 (1999)
CrossRef ADS Google scholar
[40]
F. Zhong and J. X. Zhang, Renormalization group theory of hysteresis, Phys. Rev. Lett. 75(10), 2027 (1995)
CrossRef ADS Google scholar
[41]
F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model, Phys. Rev. B 66, 060401(R) (2002)
[42]
F. Zhong and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
CrossRef ADS Google scholar
[43]
M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
CrossRef ADS Google scholar
[44]
J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
CrossRef ADS Google scholar
[45]
O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals–Maxwell theory, J. Stat. Phys. 3(2), 211 (1971)
CrossRef ADS Google scholar
[46]
J. S. Langer, Metastable states, Physica 73(1), 61 (1974)
CrossRef ADS Google scholar
[47]
K. Binder, Double-well thermodynamic potentials and spinodal curves: How real are they? Philos. Mag. Lett. 87(11), 799 (2007)
CrossRef ADS Google scholar
[48]
J. D. Gunton and M. C. Yalabik, Renormalizationgroup analysis of the mean-field theory of metastability: A spinodal fixed point, Phys. Rev. B 18(11), 6199 (1978)
CrossRef ADS Google scholar
[49]
W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
CrossRef ADS Google scholar
[50]
C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
CrossRef ADS Google scholar
[51]
H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, <Eds/>. C. P. Enz, Berlin: Springer, 1979
CrossRef ADS Google scholar
[52]
H. K. Janssen, in: From Phase Transition to Chaos, eds. G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992, and references therein
[53]
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd<Eds/>., Oxford: Clarendon, 1996
[54]
A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
CrossRef ADS Google scholar
[55]
U. C. Täuber, Critical Dynamics, http://www.phys.vt. edu/tauber/utaeuber.html
[56]
R. Folk and G. Moser, Critical dynamics: A fieldtheoretical approach, J. Phys. A 39(24), R207 (2006)
CrossRef ADS Google scholar
[57]
P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
CrossRef ADS Google scholar
[58]
R. Bausch, J. K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24(1), 113 (1976)
CrossRef ADS Google scholar
[59]
U. Deker and F. Haake, Fluctuation-dissipation theorems for classical processes, Phys. Rev. A 11(6), 2043 (1975)
CrossRef ADS Google scholar
[60]
C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
CrossRef ADS Google scholar
[61]
Y. Saito, Pseudocritical phenomena near the spinodal point, Prog. Theor. Phys. 59(2), 375 (1978)
CrossRef ADS Google scholar
[62]
D. J. Amit, Renormalization of the Potts model, J. Phys. A 9(9), 1441 (1976)
CrossRef ADS Google scholar
[63]
A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems, Phys. Rev. Lett. 35(6), 327 (1975)
CrossRef ADS Google scholar
[64]
S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
CrossRef ADS Google scholar
[65]
F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in: Applications of Monte Carlo Method in Science and Engineering,<Eds/>. S. Mordechai, Rijeka: Intech, 2011. Available at http://www.intechopen.com/articles/show/title/finitetime- scaling-and-its-applications-to-continuous-phasetransitions
[66]
F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
CrossRef ADS Google scholar
[67]
P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
CrossRef ADS Google scholar
[68]
V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials, Sov. Phys. Solid State 2, 1824 (1960)
[69]
D. J. Amit, The Ginzburg criterion-rationalized, J. Phys. C: Solid State Phys. 7, 3369 (1974)
CrossRef ADS Google scholar
[70]
K. Binder, Nucleation barriers, spinodals, and the Ginzburg criterion, Phys. Rev. A 29(1), 341 (1984)
CrossRef ADS Google scholar
[71]
E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green, Vol. 6, New York: Academic, 1976
[72]
D. J. Amit and V. Martin-Mayer, Field Theory, the Renormalization Group, and Critical Phenomena, 3rd <Eds/>., Singapore: World Scientific, 2005
CrossRef ADS Google scholar
[73]
K. Symanzik, Massless φ4 theory in 4-εdimensions theory in 4-ε dimensions, Lett. Nuovo Cimento 8(13), 771 (1973)
CrossRef ADS Google scholar
[74]
G. Parisi, Field-theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23(1), 49 (1980)
CrossRef ADS Google scholar
[75]
M. C. Bergère and F. David, Nonanalyticity of the perturbative expansion for super-renormalizable massless field theories, Ann. Phys. 142(2), 416 (1982)
CrossRef ADS Google scholar
[76]
C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d= 3: The disordered-phase case, Phys. Rev. B 32(11), 7209 (1985)
CrossRef ADS Google scholar
[77]
C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d= 3 (II): The ordered-phase case, Phys. Rev. B 35(7), 3585 (1987)
CrossRef ADS Google scholar
[78]
R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical behavior in three dimensions, Nucl. Phys. B 328(3), 639 (1989)
CrossRef ADS Google scholar
[79]
G. ’t Hooft and H. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
CrossRef ADS Google scholar
[80]
S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
CrossRef ADS Google scholar
[81]
H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes, Z. Phys. B 73(4), 539 (1989)
CrossRef ADS Google scholar
[82]
F. W. Wegner, Corrections to scaling laws, Phys. Rev. B 5(11), 4529 (1972)
CrossRef ADS Google scholar
[83]
P. G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A 30(8), 454 (1969)
CrossRef ADS Google scholar
[84]
R. G. Priest and T. C. Lubensky, Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13(9), 4159 (1976)
CrossRef ADS Google scholar
[85]
R. B. Potts and C. Domb, Some generalized orderdisorder transformations, Proc. Camb. Philos. Soc. 48(01), 106 (1952)
CrossRef ADS Google scholar
[86]
R. K. P. Zia and D. J. Wallace, Critical behavior of the continuous n-component Potts model, J. Phys. A 8(9), 1495 (1975)
CrossRef ADS Google scholar
[87]
C. M. Fortuin and P. W. Kasteleyn, On the randomcluster model, Physica 57(4), 536 (1972)
CrossRef ADS Google scholar
[88]
S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5(5), 965 (1975)
CrossRef ADS Google scholar
[89]
A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical properties of spin-glasses, Phys. Rev. Lett. 36, 415 (1976)
CrossRef ADS Google scholar
[90]
G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663 (2004)
CrossRef ADS Google scholar
[91]
G. Ódor, Universality in Nonequilibrium Lattice Systems, Singapore: World Scientific, 2008
CrossRef ADS Google scholar
[92]
H. K. Janssen and U. C. Täuber, The field theory approach to percolation processes, Ann. Phys. 315(1), 147 (2005)
CrossRef ADS Google scholar
[93]
H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. R. White, Reggeon field theory: Formulation and use, Phys. Rep. 21(3), 119 (1975)
CrossRef ADS Google scholar
[94]
M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37(3), 255 (1978)
CrossRef ADS Google scholar
[95]
J. L. Cardy and R. L. Sugar, Directed percolation and Reggeon field theory, J. Phys. A 13(12), L423 (1980)
CrossRef ADS Google scholar
[96]
G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee–Yang edge singularity, Phys. Rev. Lett. 46(14), 871 (1981)
CrossRef ADS Google scholar
[97]
T. C. Lubensky and A. J. McKane, Anderson localization, branched polymers and the Yang–Lee edge singularity, J. Phys. Lett. 42(14), 331 (1981)
CrossRef ADS Google scholar
[98]
J. L. Cardy, Directed lattice animals and the Lee–Yang edge singularity, J. Phys. A 15(11), L593 (1982)
CrossRef ADS Google scholar
[99]
A. J. McKane, D. J. Wallace, and R. K. P. Zia, Models for strong interactions in 6-∈ dimensions, Phys. Lett. B 65(2), 171 (1976)
CrossRef ADS Google scholar
[100]
O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ∈3 for φ3 models of critical phenomena in 6-∈ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)
CrossRef ADS Google scholar
[101]
O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
CrossRef ADS Google scholar
[102]
A. J. McKane, Vacuum instability in scalar field theories, Nucl. Phys. B 152(1), 166 (1979)
CrossRef ADS Google scholar
[103]
J. E. Kirkham and D. J. Wallace, Comments on the field-theoretic formulation of the Yang–Lee edge singularity, J. Phys. A 12(2), L47 (1979)
CrossRef ADS Google scholar
[104]
A. Houghton, J. S. Reeve, and D. J. Wallace, Highorder behavior in φ3 field theories and the percolation problem, Phys. Rev. B 17(7), 2956 (1978)
CrossRef ADS Google scholar
[105]
D. J. Amit, D. J. Wallace, and R. K. P. Zia, Universality in the percolation problem — Anomalous dimensions of φ4 operators, Phys. Rev. B 15(10), 4657 (1977)
CrossRef ADS Google scholar
[106]
D. J. Elderfield and A. J. McKane, Relevance of φ4 operators in the Edwards–Anderson model, Phys. Rev. B 18(7), 3730 (1978)
CrossRef ADS Google scholar
[107]
C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)
CrossRef ADS Google scholar
[108]
T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)
CrossRef ADS Google scholar
[109]
P. J. Kortman and R. B. Griffiths, Density of zeros on the Lee–Yang circle for two Ising ferromagnets, Phys. Rev. Lett. 27(21), 1439 (1971)
CrossRef ADS Google scholar
[110]
D. A. Kurtze and M. E. Fisher, Yang–Lee edge singularities at high temperatures, Phys. Rev. B 20(7), 2785 (1979)
CrossRef ADS Google scholar
[111]
N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. B 41(1), 55 (1981)
CrossRef ADS Google scholar
[112]
J. Reeve, A. J. Guttmann, and B. Keck, Critical behavior of φ3 field theories in three dimensions, Phys. Rev. B 26(7), 3923 (1982)
CrossRef ADS Google scholar
[113]
See, e.g., L. H. Ryder, Quantum Field Theory, 2nd<Eds/>., Cambridge: Cambridge University Press, 2004
[114]
F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1360 KB)

Accesses

Citations

Detail

Sections
Recommended

/