Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model
Fan Zhong
Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model
Through a detailed study of the mean-field approximation, the Gaussian approximation, the perturbation expansion, and the field-theoretic renormalization-group analysis of a φ3 theory, we show that the instability fixed points of the theory, together with their associated instability exponents, are quite probably relevant to the scaling and universality behavior exhibited by the first-order phase transitions in a field-driven scalar φ4 model, below its critical temperature and near the instability points. Finitetime scaling and leading corrections to the scaling are considered. We also show that the instability exponents of the first-order phase transitions are equivalent to those of the Yang–Lee edge singularity, and employ the latter to improve our estimates of the former. The outcomes agree well with existing numerical results.
first-order phase transitions / renormalization group theory / φ3 theory / scaling and universality / instability exponents / Yang–Lee edge singularity / finite-time scaling / corrections to scaling / scalar model / dynamics / hysteresis
[1] |
P. Ehrenfest, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Comm. Kamerlingh Onnes Lab., University of Leiden, Suppl. 75b (1933) [Proc. Acad. Sci. Amsterdam 36, 153 (1933)]
|
[2] |
M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
CrossRef
ADS
Google scholar
|
[3] |
T. Andrews, The Bakerian lecture: On the continuity of the gaseous and liquid states of matter, Philos. Trans. R. Soc. Lond. 159(0), 575 (1869)
CrossRef
ADS
Google scholar
|
[4] |
K. G. Wilson, Renormalization group and critical phenomena (I), Phys. Rev. B 4(9), 3174 (1971)
CrossRef
ADS
Google scholar
|
[5] |
K. G. Wilson, Renormalization group and critical phenomena (II): Phase-space cell analysis of critical behavior, Phys. Rev. B 4(9), 3184 (1971)
CrossRef
ADS
Google scholar
|
[6] |
K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. C 12(2), 75 (1974)
CrossRef
ADS
Google scholar
|
[7] |
M. E. Fisher, The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46(4), 597 (1974)
CrossRef
ADS
Google scholar
|
[8] |
H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71(2), S358 (1999)
CrossRef
ADS
Google scholar
|
[9] |
For a recent review, see, M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Critical phenomena in microgravity: Past, present, and future, Rev. Mod. Phys. 79(1), 1 (2007)
CrossRef
ADS
Google scholar
|
[10] |
J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
CrossRef
ADS
Google scholar
|
[11] |
J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
|
[12] |
K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
CrossRef
ADS
Google scholar
|
[13] |
P. G. Debenedetti, Metastable Liquids, Princeton: Princeton University, 1996
|
[14] |
J. van der Waals, On the continuity of the gaseous and liquid state, Thesis, Leiden, 1873 (unpublished)
|
[15] |
J. C. Maxwell, Scientific Papers, New York: Dover, 1965, p. 425
|
[16] |
J. W. Gibbs, The Collective Works of J. Willard Gibbs, Vol. 1, New York: Longman, 1931
|
[17] |
J. D. Gunton, Homogeneous nucleation, J. Stat. Phys. 95(5/6), 903 (1999)
CrossRef
ADS
Google scholar
|
[18] |
D. W. Oxtoby, Nucleation of first-order phase transitions, Acc. Chem. Res. 31(2), 91 (1998)
CrossRef
ADS
Google scholar
|
[19] |
R. B. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter 19, 033101 (2007)
CrossRef
ADS
Google scholar
|
[20] |
K. Binder and P. Fratzl, in: Phase Transformations in Materials, <Eds/>. G. Kostorz, Weinheim: Wiley, 2001
|
[21] |
J. S. Langer, M. Baron, and H. D. Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11(4), 1417 (1975)
CrossRef
ADS
Google scholar
|
[22] |
K. Binder, “Clusters” in the Ising model, metastable states and essential singularity, Ann. Phys. 98(2), 390 (1976)
CrossRef
ADS
Google scholar
|
[23] |
K. Binder and D. Stauffer, Statistical theory of nucleation, condensation and coagulation, Adv. Phys. 25(4), 343 (1976)
CrossRef
ADS
Google scholar
|
[24] |
F. Zhong, Instability points and spinodal points, 2010 (unpublished)
|
[25] |
B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory, Phys. Rev. Lett. 35(8), 477 (1975)
CrossRef
ADS
Google scholar
|
[26] |
M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26(5), 2507 (1982)
CrossRef
ADS
Google scholar
|
[27] |
A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994), reprinted as Adv. Phys. 51, 481 (2002), and references therein
|
[28] |
J. Marro, J. L. Lebowitz, and M. H. Kalos, Computer simulation of the time evolution of a quenched model alloy in the nucleation region, Phys. Rev. Lett. 43(4), 282 (1979)
CrossRef
ADS
Google scholar
|
[29] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
CrossRef
ADS
Google scholar
|
[30] |
J. X. Zhang and X. J. Li, A new method for interface dynamic investigation in solid state phase transformations, Acta Sci. Nat. Uni. Sun. 2, 45 (1985)
|
[31] |
M. Rao, H. R. Krishnamurthy, and R. Pandit, Hysteresis in model spin systems, J. Phys.: Condens. Matter 1(45), 9061 (1989)
CrossRef
ADS
Google scholar
|
[32] |
M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42(1), 856 (1990)
CrossRef
ADS
Google scholar
|
[33] |
F. Zhong, J. X. Zhang, and G. G. Siu, Dynamic scaling of hysteresis in a linearly driven system, J. Phys.: Condens. Matter 6(38), 7785 (1994)
CrossRef
ADS
Google scholar
|
[34] |
F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
CrossRef
ADS
Google scholar
|
[35] |
F. Zhong, J. X. Zhang, and X. Liu, Scaling of hysteresis in the Ising model and cell-dynamical systems in a linearly varying external field, Phys. Rev. E 52(2), 1399 (1995)
CrossRef
ADS
Google scholar
|
[36] |
J. X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B 52(1), 268 (1995), and references therein
CrossRef
ADS
Google scholar
|
[37] |
J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO2 ceramics by internal-friction measurements, Phys. Rev. B 52(1), 278 (1995)
CrossRef
ADS
Google scholar
|
[38] |
J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in first-order phase transition of solids, Solid State Commun. 97(10), 847 (1996)
CrossRef
ADS
Google scholar
|
[39] |
K. Chakrabarti and M. Acharyya, Dynamic transitions and hysteresis, Rev. Mod. Phys. 71(3), 847 (1999)
CrossRef
ADS
Google scholar
|
[40] |
F. Zhong and J. X. Zhang, Renormalization group theory of hysteresis, Phys. Rev. Lett. 75(10), 2027 (1995)
CrossRef
ADS
Google scholar
|
[41] |
F. Zhong, Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model, Phys. Rev. B 66, 060401(R) (2002)
|
[42] |
F. Zhong and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
CrossRef
ADS
Google scholar
|
[43] |
M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
CrossRef
ADS
Google scholar
|
[44] |
J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
CrossRef
ADS
Google scholar
|
[45] |
O. Penrose and J. L. Lebowitz, Rigorous treatment of metastable states in the van der Waals–Maxwell theory, J. Stat. Phys. 3(2), 211 (1971)
CrossRef
ADS
Google scholar
|
[46] |
J. S. Langer, Metastable states, Physica 73(1), 61 (1974)
CrossRef
ADS
Google scholar
|
[47] |
K. Binder, Double-well thermodynamic potentials and spinodal curves: How real are they? Philos. Mag. Lett. 87(11), 799 (2007)
CrossRef
ADS
Google scholar
|
[48] |
J. D. Gunton and M. C. Yalabik, Renormalizationgroup analysis of the mean-field theory of metastability: A spinodal fixed point, Phys. Rev. B 18(11), 6199 (1978)
CrossRef
ADS
Google scholar
|
[49] |
W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
CrossRef
ADS
Google scholar
|
[50] |
C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
CrossRef
ADS
Google scholar
|
[51] |
H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, <Eds/>. C. P. Enz, Berlin: Springer, 1979
CrossRef
ADS
Google scholar
|
[52] |
H. K. Janssen, in: From Phase Transition to Chaos, eds. G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992, and references therein
|
[53] |
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd<Eds/>., Oxford: Clarendon, 1996
|
[54] |
A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
CrossRef
ADS
Google scholar
|
[55] |
U. C. Täuber, Critical Dynamics, http://www.phys.vt. edu/tauber/utaeuber.html
|
[56] |
R. Folk and G. Moser, Critical dynamics: A fieldtheoretical approach, J. Phys. A 39(24), R207 (2006)
CrossRef
ADS
Google scholar
|
[57] |
P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
CrossRef
ADS
Google scholar
|
[58] |
R. Bausch, J. K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Z. Phys. B 24(1), 113 (1976)
CrossRef
ADS
Google scholar
|
[59] |
U. Deker and F. Haake, Fluctuation-dissipation theorems for classical processes, Phys. Rev. A 11(6), 2043 (1975)
CrossRef
ADS
Google scholar
|
[60] |
C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
CrossRef
ADS
Google scholar
|
[61] |
Y. Saito, Pseudocritical phenomena near the spinodal point, Prog. Theor. Phys. 59(2), 375 (1978)
CrossRef
ADS
Google scholar
|
[62] |
D. J. Amit, Renormalization of the Potts model, J. Phys. A 9(9), 1441 (1976)
CrossRef
ADS
Google scholar
|
[63] |
A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems, Phys. Rev. Lett. 35(6), 327 (1975)
CrossRef
ADS
Google scholar
|
[64] |
S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
CrossRef
ADS
Google scholar
|
[65] |
F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in: Applications of Monte Carlo Method in Science and Engineering,<Eds/>. S. Mordechai, Rijeka: Intech, 2011. Available at http://www.intechopen.com/articles/show/title/finitetime- scaling-and-its-applications-to-continuous-phasetransitions
|
[66] |
F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
CrossRef
ADS
Google scholar
|
[67] |
P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
CrossRef
ADS
Google scholar
|
[68] |
V. L. Ginzburg, Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials, Sov. Phys. Solid State 2, 1824 (1960)
|
[69] |
D. J. Amit, The Ginzburg criterion-rationalized, J. Phys. C: Solid State Phys. 7, 3369 (1974)
CrossRef
ADS
Google scholar
|
[70] |
K. Binder, Nucleation barriers, spinodals, and the Ginzburg criterion, Phys. Rev. A 29(1), 341 (1984)
CrossRef
ADS
Google scholar
|
[71] |
E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, in: Phase Transitions and Critical Phenomena, eds. C. Domb and M. S. Green, Vol. 6, New York: Academic, 1976
|
[72] |
D. J. Amit and V. Martin-Mayer, Field Theory, the Renormalization Group, and Critical Phenomena, 3rd <Eds/>., Singapore: World Scientific, 2005
CrossRef
ADS
Google scholar
|
[73] |
K. Symanzik, Massless φ4 theory in 4-εdimensions theory in 4-ε dimensions, Lett. Nuovo Cimento 8(13), 771 (1973)
CrossRef
ADS
Google scholar
|
[74] |
G. Parisi, Field-theoretic approach to second-order phase transitions in two- and three-dimensional systems, J. Stat. Phys. 23(1), 49 (1980)
CrossRef
ADS
Google scholar
|
[75] |
M. C. Bergère and F. David, Nonanalyticity of the perturbative expansion for super-renormalizable massless field theories, Ann. Phys. 142(2), 416 (1982)
CrossRef
ADS
Google scholar
|
[76] |
C. Bagnuls and C. Bervillier, Nonasymptotic critical behavior from field theory at d= 3: The disordered-phase case, Phys. Rev. B 32(11), 7209 (1985)
CrossRef
ADS
Google scholar
|
[77] |
C. Bagnuls, C. Bervillier, D. I. Meiron, and B. G. Nickel, Nonasymptotic critical behavior from field theory at d= 3 (II): The ordered-phase case, Phys. Rev. B 35(7), 3585 (1987)
CrossRef
ADS
Google scholar
|
[78] |
R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical behavior in three dimensions, Nucl. Phys. B 328(3), 639 (1989)
CrossRef
ADS
Google scholar
|
[79] |
G. ’t Hooft and H. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
CrossRef
ADS
Google scholar
|
[80] |
S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
CrossRef
ADS
Google scholar
|
[81] |
H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behaviour of critical relaxation processes, Z. Phys. B 73(4), 539 (1989)
CrossRef
ADS
Google scholar
|
[82] |
F. W. Wegner, Corrections to scaling laws, Phys. Rev. B 5(11), 4529 (1972)
CrossRef
ADS
Google scholar
|
[83] |
P. G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials, Phys. Lett. A 30(8), 454 (1969)
CrossRef
ADS
Google scholar
|
[84] |
R. G. Priest and T. C. Lubensky, Critical properties of two tensor models with application to the percolation problem, Phys. Rev. B 13(9), 4159 (1976)
CrossRef
ADS
Google scholar
|
[85] |
R. B. Potts and C. Domb, Some generalized orderdisorder transformations, Proc. Camb. Philos. Soc. 48(01), 106 (1952)
CrossRef
ADS
Google scholar
|
[86] |
R. K. P. Zia and D. J. Wallace, Critical behavior of the continuous n-component Potts model, J. Phys. A 8(9), 1495 (1975)
CrossRef
ADS
Google scholar
|
[87] |
C. M. Fortuin and P. W. Kasteleyn, On the randomcluster model, Physica 57(4), 536 (1972)
CrossRef
ADS
Google scholar
|
[88] |
S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5(5), 965 (1975)
CrossRef
ADS
Google scholar
|
[89] |
A. B. Harris, T. C. Lubensky, and J.-H. Chen, Critical properties of spin-glasses, Phys. Rev. Lett. 36, 415 (1976)
CrossRef
ADS
Google scholar
|
[90] |
G. Ódor, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76(3), 663 (2004)
CrossRef
ADS
Google scholar
|
[91] |
G. Ódor, Universality in Nonequilibrium Lattice Systems, Singapore: World Scientific, 2008
CrossRef
ADS
Google scholar
|
[92] |
H. K. Janssen and U. C. Täuber, The field theory approach to percolation processes, Ann. Phys. 315(1), 147 (2005)
CrossRef
ADS
Google scholar
|
[93] |
H. D. I. Abarbanel, J. D. Bronzan, R. L. Sugar, and A. R. White, Reggeon field theory: Formulation and use, Phys. Rep. 21(3), 119 (1975)
CrossRef
ADS
Google scholar
|
[94] |
M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37(3), 255 (1978)
CrossRef
ADS
Google scholar
|
[95] |
J. L. Cardy and R. L. Sugar, Directed percolation and Reggeon field theory, J. Phys. A 13(12), L423 (1980)
CrossRef
ADS
Google scholar
|
[96] |
G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee–Yang edge singularity, Phys. Rev. Lett. 46(14), 871 (1981)
CrossRef
ADS
Google scholar
|
[97] |
T. C. Lubensky and A. J. McKane, Anderson localization, branched polymers and the Yang–Lee edge singularity, J. Phys. Lett. 42(14), 331 (1981)
CrossRef
ADS
Google scholar
|
[98] |
J. L. Cardy, Directed lattice animals and the Lee–Yang edge singularity, J. Phys. A 15(11), L593 (1982)
CrossRef
ADS
Google scholar
|
[99] |
A. J. McKane, D. J. Wallace, and R. K. P. Zia, Models for strong interactions in 6-∈ dimensions, Phys. Lett. B 65(2), 171 (1976)
CrossRef
ADS
Google scholar
|
[100] |
O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ∈3 for φ3 models of critical phenomena in 6-∈ dimensions, J. Phys. Math. Gen. 13(7), L247 (1980)
CrossRef
ADS
Google scholar
|
[101] |
O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
CrossRef
ADS
Google scholar
|
[102] |
A. J. McKane, Vacuum instability in scalar field theories, Nucl. Phys. B 152(1), 166 (1979)
CrossRef
ADS
Google scholar
|
[103] |
J. E. Kirkham and D. J. Wallace, Comments on the field-theoretic formulation of the Yang–Lee edge singularity, J. Phys. A 12(2), L47 (1979)
CrossRef
ADS
Google scholar
|
[104] |
A. Houghton, J. S. Reeve, and D. J. Wallace, Highorder behavior in φ3 field theories and the percolation problem, Phys. Rev. B 17(7), 2956 (1978)
CrossRef
ADS
Google scholar
|
[105] |
D. J. Amit, D. J. Wallace, and R. K. P. Zia, Universality in the percolation problem — Anomalous dimensions of φ4 operators, Phys. Rev. B 15(10), 4657 (1977)
CrossRef
ADS
Google scholar
|
[106] |
D. J. Elderfield and A. J. McKane, Relevance of φ4 operators in the Edwards–Anderson model, Phys. Rev. B 18(7), 3730 (1978)
CrossRef
ADS
Google scholar
|
[107] |
C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions (I): Theory of condensation, Phys. Rev. 87(3), 404 (1952)
CrossRef
ADS
Google scholar
|
[108] |
T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions (II): Lattice gas and Ising model, Phys. Rev. 87(3), 410 (1952)
CrossRef
ADS
Google scholar
|
[109] |
P. J. Kortman and R. B. Griffiths, Density of zeros on the Lee–Yang circle for two Ising ferromagnets, Phys. Rev. Lett. 27(21), 1439 (1971)
CrossRef
ADS
Google scholar
|
[110] |
D. A. Kurtze and M. E. Fisher, Yang–Lee edge singularities at high temperatures, Phys. Rev. B 20(7), 2785 (1979)
CrossRef
ADS
Google scholar
|
[111] |
N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. B 41(1), 55 (1981)
CrossRef
ADS
Google scholar
|
[112] |
J. Reeve, A. J. Guttmann, and B. Keck, Critical behavior of φ3 field theories in three dimensions, Phys. Rev. B 26(7), 3923 (1982)
CrossRef
ADS
Google scholar
|
[113] |
See, e.g., L. H. Ryder, Quantum Field Theory, 2nd<Eds/>., Cambridge: Cambridge University Press, 2004
|
[114] |
F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |