Construction of maximally localized Wannier functions
Junbo Zhu (竺俊博), Zhu Chen (陈竹), Biao Wu (吴飙)
Construction of maximally localized Wannier functions
We present a general method for constructing maximally localized Wannier functions. It consists of three steps: (i) picking a localized trial wave function, (ii) performing a full band projection, and (iii) orthonormalizing with the Löwdin method. Our method is capable of producing maximally localized Wannier functions without further minimization, and it can be applied straightforwardly to random potentials without using supercells. The effectiveness of our method is demonstrated for both simple bands and composite bands.
Wannier function / random potential / cold atomic gases
[1] |
G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937)
CrossRef
ADS
Google scholar
|
[2] |
R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66, 899 (1994)
CrossRef
ADS
Google scholar
|
[3] |
R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993)
CrossRef
ADS
Google scholar
|
[4] |
S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085 (1999)
CrossRef
ADS
Google scholar
|
[5] |
G. Galli, Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations, Current Opinion in Solid State and Materials Science 1(6), 864 (1996)
CrossRef
ADS
Google scholar
|
[6] |
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81, 3108 (1998)
CrossRef
ADS
Google scholar
|
[7] |
M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley, and B. DeMarco, Strongly interacting bosons in a disordered optical lattice, Phys. Rev. Lett. 102, 055301 (2009)
CrossRef
ADS
Google scholar
|
[8] |
S. Q. Zhou and D. M. Ceperley, Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters, Phys. Rev. A 81, 013402 (2010)
CrossRef
ADS
Google scholar
|
[9] |
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997)
CrossRef
ADS
Google scholar
|
[10] |
W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Rev. 115, 809 (1959)
CrossRef
ADS
Google scholar
|
[11] |
H. Teichler, Best Localized Symmetry-Adapted Wannier Functions of the Diamond Structure, Phys. Status Solidi B 43, 307 (1971)
CrossRef
ADS
Google scholar
|
[12] |
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012)
CrossRef
ADS
Google scholar
|
[13] |
H. D. Cornean, I. Herbst, and G. Nenciu, On the construction of composite Wannier functions, arXiv: 1506.07435 (2015)
|
[14] |
J. I. Mustafa, S. Coh, M. L. Cohen, and S. G. Louie, Automated construction of maximally localized Wannier functions: Optimized projection functions method, Phys. Rev. B 92, 165134 (2015), arXiv: 1508.04148 (2015)
|
[15] |
E. Cancès, A. Levitt, G. Panati, and G. Stoltz, Robust determination of maximally-localized Wannier functions, arXiv: 1605.07201 (2016)
|
[16] |
P. O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 18, 365 (1950)
CrossRef
ADS
Google scholar
|
[17] |
W. Kohn, Construction of Wannier functions and applications to energy bands, Phys. Rev. B 7, 4388 (1973)
CrossRef
ADS
Google scholar
|
[18] |
J. G. Aiken, J. A. Erdos, and J. A. Goldstein, You have full text access to this content On Löwdin orthogonalization, Int. J. Quantum Chem. 18, 1101 (1980)
CrossRef
ADS
Google scholar
|
[19] |
A. Nenciu and G. Nenciu, Existence of exponentially localized Wannier functions for nonperiodic systems, Phys. Rev. B 47, 10112 (1993)
CrossRef
ADS
Google scholar
|
[20] |
W. Kohn and J. R. Onffroy, Wannier functions in a simple nonperiodic system, Phys. Rev. B 8, 2485 (1973)
CrossRef
ADS
Google scholar
|
[21] |
S. Kivelson, Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons, Phys. Rev. B 26, 4269 (1982)
CrossRef
ADS
Google scholar
|
[22] |
J. Zhu, Z. Chen, and B. Wu, Construction of Wannier functions in disordered systems, arXiv: 1512.02043 (2015)
|
/
〈 | 〉 |