Construction of maximally localized Wannier functions

Junbo Zhu (竺俊博), Zhu Chen (陈竹), Biao Wu (吴飙)

PDF(874 KB)
PDF(874 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127102. DOI: 10.1007/s11467-016-0628-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Construction of maximally localized Wannier functions

Author information +
History +

Abstract

We present a general method for constructing maximally localized Wannier functions. It consists of three steps: (i) picking a localized trial wave function, (ii) performing a full band projection, and (iii) orthonormalizing with the Löwdin method. Our method is capable of producing maximally localized Wannier functions without further minimization, and it can be applied straightforwardly to random potentials without using supercells. The effectiveness of our method is demonstrated for both simple bands and composite bands.

Keywords

Wannier function / random potential / cold atomic gases

Cite this article

Download citation ▾
Junbo Zhu (竺俊博), Zhu Chen (陈竹), Biao Wu (吴飙). Construction of maximally localized Wannier functions. Front. Phys., 2017, 12(5): 127102 https://doi.org/10.1007/s11467-016-0628-8

References

[1]
G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191 (1937)
CrossRef ADS Google scholar
[2]
R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66, 899 (1994)
CrossRef ADS Google scholar
[3]
R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47, 1651 (1993)
CrossRef ADS Google scholar
[4]
S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71, 1085 (1999)
CrossRef ADS Google scholar
[5]
G. Galli, Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations, Current Opinion in Solid State and Materials Science 1(6), 864 (1996)
CrossRef ADS Google scholar
[6]
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81, 3108 (1998)
CrossRef ADS Google scholar
[7]
M. White, M. Pasienski, D. McKay, S. Q. Zhou, D. Ceperley, and B. DeMarco, Strongly interacting bosons in a disordered optical lattice, Phys. Rev. Lett. 102, 055301 (2009)
CrossRef ADS Google scholar
[8]
S. Q. Zhou and D. M. Ceperley, Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters, Phys. Rev. A 81, 013402 (2010)
CrossRef ADS Google scholar
[9]
N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997)
CrossRef ADS Google scholar
[10]
W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Rev. 115, 809 (1959)
CrossRef ADS Google scholar
[11]
H. Teichler, Best Localized Symmetry-Adapted Wannier Functions of the Diamond Structure, Phys. Status Solidi B 43, 307 (1971)
CrossRef ADS Google scholar
[12]
N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012)
CrossRef ADS Google scholar
[13]
H. D. Cornean, I. Herbst, and G. Nenciu, On the construction of composite Wannier functions, arXiv: 1506.07435 (2015)
[14]
J. I. Mustafa, S. Coh, M. L. Cohen, and S. G. Louie, Automated construction of maximally localized Wannier functions: Optimized projection functions method, Phys. Rev. B 92, 165134 (2015), arXiv: 1508.04148 (2015)
[15]
E. Cancès, A. Levitt, G. Panati, and G. Stoltz, Robust determination of maximally-localized Wannier functions, arXiv: 1605.07201 (2016)
[16]
P. O. Löwdin, On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys. 18, 365 (1950)
CrossRef ADS Google scholar
[17]
W. Kohn, Construction of Wannier functions and applications to energy bands, Phys. Rev. B 7, 4388 (1973)
CrossRef ADS Google scholar
[18]
J. G. Aiken, J. A. Erdos, and J. A. Goldstein, You have full text access to this content On Löwdin orthogonalization, Int. J. Quantum Chem. 18, 1101 (1980)
CrossRef ADS Google scholar
[19]
A. Nenciu and G. Nenciu, Existence of exponentially localized Wannier functions for nonperiodic systems, Phys. Rev. B 47, 10112 (1993)
CrossRef ADS Google scholar
[20]
W. Kohn and J. R. Onffroy, Wannier functions in a simple nonperiodic system, Phys. Rev. B 8, 2485 (1973)
CrossRef ADS Google scholar
[21]
S. Kivelson, Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons, Phys. Rev. B 26, 4269 (1982)
CrossRef ADS Google scholar
[22]
J. Zhu, Z. Chen, and B. Wu, Construction of Wannier functions in disordered systems, arXiv: 1512.02043 (2015)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(874 KB)

Accesses

Citations

Detail

Sections
Recommended

/