Modification of single molecule fluorescence using external fields

Rui-Yun Chen, Guo-Feng Zhang, Cheng-Bin Qin, Yan Gao, Lian-Tuan Xiao, Suo-Tang Jia

PDF(10508 KB)
PDF(10508 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128101. DOI: 10.1007/s11467-016-0627-9
REVIEW ARTICLE
REVIEW ARTICLE

Modification of single molecule fluorescence using external fields

Author information +
History +

Abstract

Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.

Keywords

single molecules / fluorescence / modification / external fields

Cite this article

Download citation ▾
Rui-Yun Chen, Guo-Feng Zhang, Cheng-Bin Qin, Yan Gao, Lian-Tuan Xiao, Suo-Tang Jia. Modification of single molecule fluorescence using external fields. Front. Phys., 2017, 12(5): 128101 https://doi.org/10.1007/s11467-016-0627-9

References

[1]
A. Maser, B. Gmeiner, T. Utikal, S. Götzinger, and V. Sandoghdar, Few-photon coherent nonlinear optics with a single molecule, Nat. Photonics 10(7), 450 (2016)
CrossRef ADS Google scholar
[2]
C. Lv, X. Gao, W. Li, B. Xue, M. Qin, L. Burtnick, H. Zhou, Y. Cao, R. Robinson, and W. Wang, Singlemolecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin, Nat. Commun. 5, 5623 (2014)
CrossRef ADS Google scholar
[3]
R. Zhang, Y. Zhang, Z. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. E. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)
CrossRef ADS Google scholar
[4]
M. Orrit and J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal, Phys. Rev. Lett. 65(21), 2716 (1990)
CrossRef ADS Google scholar
[5]
W. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Phys. Rev. Lett. 62(21), 2535 (1989)
CrossRef ADS Google scholar
[6]
E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)
CrossRef ADS Google scholar
[7]
X. S. Xie and R. C. Dunn, Probing single molecule dynamics, Science 265(5170), 361 (1994)
CrossRef ADS Google scholar
[8]
G. Zhang, L. Xiao, F. Zhang, X. Wang, and S. Jia, Single molecules reorientation reveals the dynamics of polymer glasses surface, Phys. Chem. Chem. Phys. 12(10), 2308 (2010)
CrossRef ADS Google scholar
[9]
M. Geiselmann, R. Marty, F. J. García de Abajo, and R. Quidant, Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre, Nat. Phys. 9(12), 785 (2013)
CrossRef ADS Google scholar
[10]
N. D. Lai, O. Faklaris, D. Zheng, V. Jacques, H. Chang, J. Roch, and F. Treussart, Quenching nitrogen–vacancy center photoluminescence with an infrared pulsed laser, New J. Phys. 15(3), 033030 (2013)
CrossRef ADS Google scholar
[11]
T. Plakhotnik and D. Gruber, Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: Perspectives on nanothermometry, Phys. Chem. Chem. Phys. 12(33), 9751 (2010)
CrossRef ADS Google scholar
[12]
S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: Temperature effects, Opt. Lett. 41(9), 2077 (2016)
CrossRef ADS Google scholar
[13]
M. Barth, S. Schietinger, T. Schröder, T. Aichele, and O. Benson, Controlled coupling of NV defect centers to plasmonic and photonic nanostructures, J. Lumin. 130(9), 1628 (2010)
CrossRef ADS Google scholar
[14]
D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle, Nano Lett. 11(3), 1049 (2011)
CrossRef ADS Google scholar
[15]
C. Buranachai, S. A. McKinney, and T. Ha, Single molecule nanometronome, Nano Lett. 6(3), 496 (2006)
CrossRef ADS Google scholar
[16]
L. Liu, G. Zhang, W. Tan, D. Zhang, and D. Zhu, A temperature-regulated molecular redox fluorescence switch based on a triad bearing tetrathiafulvalene, maleimide and pyrene moieties, Chem. Phys. Lett. 465(4–6), 230 (2008)
CrossRef ADS Google scholar
[17]
Y. B. Zheng, J. L. Payton, C. H. Chung, R. Liu, S. Cheunkar, B. K. Pathem, Y. Yang, L. Jensen, and P. S. Weiss, Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments, Nano Lett. 11(8), 3447 (2011)
CrossRef ADS Google scholar
[18]
K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency, Nat. Photonics 5(3), 166 (2011)
CrossRef ADS Google scholar
[19]
X. W. Chen, S. Götzinger, and V. Sandoghdar, 99% efficiency in collecting photons from a single emitter, Opt. Lett. 36(18), 3545 (2011)
CrossRef ADS Google scholar
[20]
P. F. Barbara, T. J. Meyer, and M. A. Ratner, Contemporary issues in electron transfer research, J. Phys. Chem. 100(31), 13148 (1996)
CrossRef ADS Google scholar
[21]
J. Zhang, A. M. Kuznetsov, I. G. Medvedev, Q. Chi, T. Albrecht, P. S. Jensen, and J. Ulstrup, Singlemolecule electron transfer in electrochemical environments, Chem. Rev. 108(7), 2737 (2008)
CrossRef ADS Google scholar
[22]
H. P. Lu and X. S. Xie, Single-molecule kinetics of interfacial electron transfer, J. Phys. Chem. B 101(15), 2753 (1997)
CrossRef ADS Google scholar
[23]
H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer, Science 302(5643), 262 (2003)
CrossRef ADS Google scholar
[24]
J. R. Siekierzycka, C. Hippius, F. Würthner, R. M. Williams, and A. M. Brouwer, Polymer glass transitions switch electron transfer in individual molecules, J. Am. Chem. Soc. 132(4), 1240 (2010)
CrossRef ADS Google scholar
[25]
L. Zang, R. Liu, M. W. Holman, K. T. Nguyen, and D. M. Adams, A single-molecule probe based on intramolecular electron transfer, J. Am. Chem. Soc. 124(36), 10640 (2002)
CrossRef ADS Google scholar
[26]
V. Biju, M. Micic, D. Hu, and H. P. Lu, Intermittent single-molecule interfacial electron transfer dynamics, J. Am. Chem. Soc. 126(30), 9374 (2004)
CrossRef ADS Google scholar
[27]
M. W. Holman, R. Liu, and D. M. Adams, Singlemolecule spectroscopy of interfacial electron transfer, J. Am. Chem. Soc. 125(41), 12649 (2003)
CrossRef ADS Google scholar
[28]
H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging, Nature 469(7330), 385 (2011)
CrossRef ADS Google scholar
[29]
K. G. Thomas and P. V. Kamat, Making gold nanoparticles glow: Enhanced emission from a surface-bound fluoroprobe, J. Am. Chem. Soc. 122(11), 2655 (2000)
CrossRef ADS Google scholar
[30]
O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids, Nano Lett. 2(12), 1449 (2002)
CrossRef ADS Google scholar
[31]
H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, Enhancement of single-molecule fluorescence detection in subwavelength apertures, Phys. Rev. Lett. 95(11), 117401 (2005)
CrossRef ADS Google scholar
[32]
S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)
CrossRef ADS Google scholar
[33]
P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)
CrossRef ADS Google scholar
[34]
P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control, Nat. Nanotechnol. 1(2), 126 (2006)
CrossRef ADS Google scholar
[35]
J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles, Nano Lett. 7(7), 2101 (2007)
CrossRef ADS Google scholar
[36]
Y. Chen, K. Munechika, and D. S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles, Nano Lett. 7(3), 690 (2007)
CrossRef ADS Google scholar
[37]
F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Plasmonic enhancement of molecular fluorescence, Nano Lett. 7(2), 496 (2007)
CrossRef ADS Google scholar
[38]
O. Muskens, V. Giannini, J. Sanchez-Gil, and J. Gómez Rivas, Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett. 7(9), 2871 (2007)
CrossRef ADS Google scholar
[39]
R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae, Appl. Phys. Lett. 92(4), 043101 (2008)
CrossRef ADS Google scholar
[40]
G. Zoriniants and W. L. Barnes, Fluorescence enhancement through modified dye molecule absorption associated with the localized surface plasmon resonances of metallic dimers, New J. Phys. 10(10), 105002 (2008)
CrossRef ADS Google scholar
[41]
M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. Klar, and J. Feldmann, Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators, Phys. Rev. Lett. 100(20), 203002 (2008)
CrossRef ADS Google scholar
[42]
R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods, ACS Nano 3(3), 744 (2009)
CrossRef ADS Google scholar
[43]
T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, Strong polarization dependence of plasmonenhanced fluorescence on single gold nanorods, Nano Lett. 9(11), 3896 (2009)
CrossRef ADS Google scholar
[44]
A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics 3(11), 654 (2009)
CrossRef ADS Google scholar
[45]
P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, Enhancement and quenching regimes in metal– semiconductor hybrid optical nanosources, ACS Nano 4(2), 759 (2010)
CrossRef ADS Google scholar
[46]
X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, Size dependence of molecular fluorescence enhancement of nanoporous gold, Appl. Phys. Lett. 96(7), 073701 (2010)
CrossRef ADS Google scholar
[47]
K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms, Nano Lett. 10(7), 2598 (2010)
CrossRef ADS Google scholar
[48]
A. M. Kern and O. J. Martin, Excitation and reemission of molecules near realistic plasmonic nanostructures, Nano Lett. 11(2), 482 (2011)
CrossRef ADS Google scholar
[49]
Y. C. Jun, K. C. Huang, and M. L. Brongersma, Plasmonic beaming and active control over fluorescent emission, Nat. Commun. 2, 283 (2011)
CrossRef ADS Google scholar
[50]
Á. Sánchez-González, S. Corni, and B. Mennucci, Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings, J. Phys. Chem. C 115(13), 5450 (2011)
CrossRef ADS Google scholar
[51]
G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures, ACS Nano 6(2), 1438 (2012)
CrossRef ADS Google scholar
[52]
Y. Fu, J. Zhang, and J. R. Lakowicz, Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells, Chem. Commun. 48(78), 9726 (2012)
CrossRef ADS Google scholar
[53]
D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, Plasmonic enhancement of molecular fluorescence near silver nanoparticles: Theory, modeling, and experiment, J. Phys. Chem. C 116(19), 10723 (2012)
CrossRef ADS Google scholar
[54]
R. Gill, L. Tian, W. R. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement, J. Phys. Chem. C 116(31), 16687 (2012)
CrossRef ADS Google scholar
[55]
M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, and M. F. Garcia-Parajo, Ultrabright Bowtie nanoaperture antenna probes studied by single molecule fluorescence, Nano Lett. 12(11), 5972 (2012)
CrossRef ADS Google scholar
[56]
H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod, Angew. Chem. Int. Ed. 52(4), 1217 (2013)
CrossRef ADS Google scholar
[57]
Y. Fu, J. Zhang, and J. R. Lakowicz, Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures, Langmuir 29(8), 2731 (2013)
CrossRef ADS Google scholar
[58]
S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods, ACS Nano 8(5), 4440 (2014)
CrossRef ADS Google scholar
[59]
T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, Plasmon-controlled fluorescence: Beyond the intensity enhancement, J. Phys. Chem. Lett. 3(2), 191 (2012)
CrossRef ADS Google scholar
[60]
S. Khatua and M. Orrit, Probing, sensing, and fluorescence enhancement with single gold nanorods, J. Phys. Chem. Lett. 5(17), 3000 (2014)
CrossRef ADS Google scholar
[61]
Y. Fu, J. Zhang, and J. R. Lakowicz, Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods, J. Am. Chem. Soc. 132(16), 5540 (2010)
CrossRef ADS Google scholar
[62]
J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Gold nanorods: Synthesis, characterization and applications, Coord. Chem. Rev. 249(17–18), 1870 (2005)
CrossRef ADS Google scholar
[63]
M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: Engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev. 35(11), 1084 (2006)
CrossRef ADS Google scholar
[64]
B. Wiley, Y. Sun, and Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res. 40(10), 1067 (2007)
CrossRef ADS Google scholar
[65]
M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 37(9), 1783 (2008)
CrossRef ADS Google scholar
[66]
X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, Chemical synthesis of novel plasmonic nanoparticles, Annu. Rev. Phys. Chem. 60(1), 167 (2009)
CrossRef ADS Google scholar
[67]
M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111(6), 3669 (2011)
CrossRef ADS Google scholar
[68]
J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, Lightemitting diodes based on conjugated polymers, Nature 347(6293), 539 (1990)
CrossRef ADS Google scholar
[69]
H. Sirringhaus, N. Tessler, and R. H. Friend, Integrated optoelectronic devices based on conjugated polymers, Science 280(5370), 1741 (1998)
CrossRef ADS Google scholar
[70]
F. Jäckel, M. D. Watson, K. Müllen, and J. Rabe, Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates, Phys. Rev. Lett. 92(18), 188303 (2004)
CrossRef ADS Google scholar
[71]
S. Günes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107(4), 1324 (2007)
CrossRef ADS Google scholar
[72]
T. Huser, M. Yan, and L. J. Rothberg, Single chain spectroscopy of conformational dependence of conjugated polymer photophysics, Proc. Natl. Acad. Sci. USA 97(21), 11187 (2000)
CrossRef ADS Google scholar
[73]
B. J. Schwartz, Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions, Annu. Rev. Phys. Chem. 54(1), 141 (2003)
CrossRef ADS Google scholar
[74]
F. Schindler, J. M. Lupton, J. Feldmann, and U. Scherf, A universal picture of chromophores in-conjugated polymers derived from single-molecule spectroscopy, Proc. Natl. Acad. Sci. USA 101(41), 14695 (2004)
CrossRef ADS Google scholar
[75]
R. Kersting, U. Lemmer, M. Deussen, H. Bakker, R. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. Göbel, Ultrafast field-induced dissociation of excitons in conjugated polymers, Phys. Rev. Lett. 73(10), 1440 (1994)
CrossRef ADS Google scholar
[76]
M. Deussen, M. Scheidler, and H. Bässler, Electric fieldinduced photoluminescence quenching in thin-film lightemitting diodes based on poly(phenyl-p-phenylene vinylene), Synth. Met. 73(2), 123 (1995)
CrossRef ADS Google scholar
[77]
M. Esteghamatian, Z. Popovic, and G. Xu, Carrier generation process in poly (p-phenylene vinylene) by fluorescent quenching and delayed-collection-field techniques, J. Phys. Chem. 100(32), 13716 (1996)
CrossRef ADS Google scholar
[78]
M. Hilczer, S. Traytak, and M. Tachiya, Electric field effects on fluorescence quenching due to electron transfer,J. Chem. Phys. 115(24), 11249 (2001)
CrossRef ADS Google scholar
[79]
J. D. McNeill, D. B. O’Connor, D. M. Adams, P. F. Barbara, and S. B. Kämmer, Field-induced photoluminescence modulation of MEH–PPV under near-field optical excitation, J. Phys. Chem. B 105(1), 76 (2001)
CrossRef ADS Google scholar
[80]
T. M. Smith, N. Hazelton, L. A. Peteanu, and J. Wildeman, Electrofluorescence of MEH-PPV and its oligomers: Evidence for field-induced fluorescence quenching of single chains, J. Phys. Chem. B 110(15), 7732 (2006)
CrossRef ADS Google scholar
[81]
S. J. Park, A. J. Gesquiere, J. Yu, and P. F. Barbara, Charge injection and photooxidation of single conjugated polymer molecules, J. Am. Chem. Soc. 126(13), 4116 (2004)
CrossRef ADS Google scholar
[82]
P. Hania and I. Scheblykin, Electric field induced quenching of the fluorescence of a conjugated polymer probed at the single molecule level, Chem. Phys. Lett. 414(1–3), 127 (2005)
CrossRef ADS Google scholar
[83]
P. R. Hania, D. Thomsson, and I. G. Scheblykin, Host matrix dependent fluorescence intensity modulation by an electric field in single conjugated polymer chains, J. Phys. Chem. B 110(51), 25895 (2006)
CrossRef ADS Google scholar
[84]
F. Schindler, J. M. Lupton, J. Müller, J. Feldmann, and U. Scherf, How single conjugated polymer molecules respond to electric fields, Nat. Mater. 5(2), 141 (2006)
CrossRef ADS Google scholar
[85]
R. Chen, Y. Gao, G. Zhang, R. Wu, L. Xiao, and S. Jia, Electric field induced fluorescence modulation of single molecules in PMMA based on electron transfer, Int. J. Mol. Sci. 13(12), 11130 (2012)
CrossRef ADS Google scholar
[86]
R. Chen, G. Zhang, Y. Gao, L. Xiao, and S. Jia, Single molecules probe the polarization dynamics of poly (methyl methacrylate) in external electric field, Appl. Phys. Lett. 100(20), 203118 (2012)
CrossRef ADS Google scholar
[87]
D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009
CrossRef ADS Google scholar
[88]
R. Sessoli, D. Gatteschi, A. Caneschi, and M. Novak, Magnetic bistability in a metal-ion cluster, Nature 365(6442), 141 (1993)
CrossRef ADS Google scholar
[89]
X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, and M. J. Rosseinsky, Hysteretic adsorption and desorption of hydrogen by nanoporous metalorganic frameworks, Science 306(5698), 1012 (2004)
CrossRef ADS Google scholar
[90]
J. R. Pomerening, E. D. Sontag, and J. E. Ferrell, Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2, Nat. Cell Biol. 5(4), 346 (2003)
CrossRef ADS Google scholar
[91]
H. Zhou, C. Qin, R. Chen, G. Zhang, L. Xiao, and S. Jia, Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate), Appl. Phys. Lett. 105(15), 153301 (2014)
CrossRef ADS Google scholar
[92]
W. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, and U. P. Wild, Optical probing of single molecules of terrylene in a Shpol’kii matrix: A twostate single-molecule switch, J. Phys. Chem. 98(30), 7382 (1994)
CrossRef ADS Google scholar
[93]
F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and T. Basché, Single-molecule optical switching of terrylene in p-terphenyl, Nature 387(6634), 688 (1997)
CrossRef ADS Google scholar
[94]
M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai, Organic chemistry: A digital fluorescent molecular photoswitch, Nature 420(6917), 759 (2002)
CrossRef ADS Google scholar
[95]
M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, Carbocyanine dyes as efficient reversible single-molecule optical switch, J. Am. Chem. Soc. 127(11), 3801 (2005)
CrossRef ADS Google scholar
[96]
E. Rothenberg, M. Kazes, E. Shaviv, and U. Banin, Electric field induced switching of the fluorescence of single semiconductor quantum rods, Nano Lett. 5(8), 1581 (2005)
CrossRef ADS Google scholar
[97]
V. Meded, A. Bagrets, A. Arnold, and F. Evers, Molecular switch controlled by pulsed bias voltages, Small 5(19), 2218 (2009)
CrossRef ADS Google scholar
[98]
R. Wu, R. Chen, C. Qin, Y. Gao, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, An electric field induced reversible single-molecule fluorescence switch, Chem. Commun. 51(34), 7368 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(10508 KB)

Accesses

Citations

Detail

Sections
Recommended

/