Modification of single molecule fluorescence using external fields

Rui-Yun Chen , Guo-Feng Zhang , Cheng-Bin Qin , Yan Gao , Lian-Tuan Xiao , Suo-Tang Jia

Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128101

PDF (10508KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 128101 DOI: 10.1007/s11467-016-0627-9
REVIEW ARTICLE

Modification of single molecule fluorescence using external fields

Author information +
History +
PDF (10508KB)

Abstract

Controlling and manipulating the fluorescence of single fluorophores is of great interest in recent years for its potential uses in improving the performance of molecular photonics and molecular electronics, such as in organic light-emitting devices, single photon sources, organic field-effect transistors, and probes or sensors based on single molecules. This review shows how the fluorescence emission of single organic molecules can be modified using local electromagnetic fields of metallic nanostructures and electric-field-induced electron transfer. Electric-field-induced fluorescence modulation, hysteresis, and the achievement of fluorescence switch are discussed in detail.

Keywords

single molecules / fluorescence / modification / external fields

Cite this article

Download citation ▾
Rui-Yun Chen, Guo-Feng Zhang, Cheng-Bin Qin, Yan Gao, Lian-Tuan Xiao, Suo-Tang Jia. Modification of single molecule fluorescence using external fields. Front. Phys., 2017, 12(5): 128101 DOI:10.1007/s11467-016-0627-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Maser, B. Gmeiner, T. Utikal, S. Götzinger, and V. Sandoghdar, Few-photon coherent nonlinear optics with a single molecule, Nat. Photonics 10(7), 450 (2016)

[2]

C. Lv, X. Gao, W. Li, B. Xue, M. Qin, L. Burtnick, H. Zhou, Y. Cao, R. Robinson, and W. Wang, Singlemolecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin, Nat. Commun. 5, 5623 (2014)

[3]

R. Zhang, Y. Zhang, Z. Dong, S. Jiang, C. Zhang, L. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. E. Luo, J. L. Yang, and J. G. Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature 498(7452), 82 (2013)

[4]

M. Orrit and J. Bernard, Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal, Phys. Rev. Lett. 65(21), 2716 (1990)

[5]

W. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Phys. Rev. Lett. 62(21), 2535 (1989)

[6]

E. Betzig and R. J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science 262(5138), 1422 (1993)

[7]

X. S. Xie and R. C. Dunn, Probing single molecule dynamics, Science 265(5170), 361 (1994)

[8]

G. Zhang, L. Xiao, F. Zhang, X. Wang, and S. Jia, Single molecules reorientation reveals the dynamics of polymer glasses surface, Phys. Chem. Chem. Phys. 12(10), 2308 (2010)

[9]

M. Geiselmann, R. Marty, F. J. García de Abajo, and R. Quidant, Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre, Nat. Phys. 9(12), 785 (2013)

[10]

N. D. Lai, O. Faklaris, D. Zheng, V. Jacques, H. Chang, J. Roch, and F. Treussart, Quenching nitrogen–vacancy center photoluminescence with an infrared pulsed laser, New J. Phys. 15(3), 033030 (2013)

[11]

T. Plakhotnik and D. Gruber, Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: Perspectives on nanothermometry, Phys. Chem. Chem. Phys. 12(33), 9751 (2010)

[12]

S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: Temperature effects, Opt. Lett. 41(9), 2077 (2016)

[13]

M. Barth, S. Schietinger, T. Schröder, T. Aichele, and O. Benson, Controlled coupling of NV defect centers to plasmonic and photonic nanostructures, J. Lumin. 130(9), 1628 (2010)

[14]

D. Ratchford, F. Shafiei, S. Kim, S. K. Gray, and X. Li, Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle, Nano Lett. 11(3), 1049 (2011)

[15]

C. Buranachai, S. A. McKinney, and T. Ha, Single molecule nanometronome, Nano Lett. 6(3), 496 (2006)

[16]

L. Liu, G. Zhang, W. Tan, D. Zhang, and D. Zhu, A temperature-regulated molecular redox fluorescence switch based on a triad bearing tetrathiafulvalene, maleimide and pyrene moieties, Chem. Phys. Lett. 465(4–6), 230 (2008)

[17]

Y. B. Zheng, J. L. Payton, C. H. Chung, R. Liu, S. Cheunkar, B. K. Pathem, Y. Yang, L. Jensen, and P. S. Weiss, Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments, Nano Lett. 11(8), 3447 (2011)

[18]

K. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency, Nat. Photonics 5(3), 166 (2011)

[19]

X. W. Chen, S. Götzinger, and V. Sandoghdar, 99% efficiency in collecting photons from a single emitter, Opt. Lett. 36(18), 3545 (2011)

[20]

P. F. Barbara, T. J. Meyer, and M. A. Ratner, Contemporary issues in electron transfer research, J. Phys. Chem. 100(31), 13148 (1996)

[21]

J. Zhang, A. M. Kuznetsov, I. G. Medvedev, Q. Chi, T. Albrecht, P. S. Jensen, and J. Ulstrup, Singlemolecule electron transfer in electrochemical environments, Chem. Rev. 108(7), 2737 (2008)

[22]

H. P. Lu and X. S. Xie, Single-molecule kinetics of interfacial electron transfer, J. Phys. Chem. B 101(15), 2753 (1997)

[23]

H. Yang, G. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Xun, and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer, Science 302(5643), 262 (2003)

[24]

J. R. Siekierzycka, C. Hippius, F. Würthner, R. M. Williams, and A. M. Brouwer, Polymer glass transitions switch electron transfer in individual molecules, J. Am. Chem. Soc. 132(4), 1240 (2010)

[25]

L. Zang, R. Liu, M. W. Holman, K. T. Nguyen, and D. M. Adams, A single-molecule probe based on intramolecular electron transfer, J. Am. Chem. Soc. 124(36), 10640 (2002)

[26]

V. Biju, M. Micic, D. Hu, and H. P. Lu, Intermittent single-molecule interfacial electron transfer dynamics, J. Am. Chem. Soc. 126(30), 9374 (2004)

[27]

M. W. Holman, R. Liu, and D. M. Adams, Singlemolecule spectroscopy of interfacial electron transfer, J. Am. Chem. Soc. 125(41), 12649 (2003)

[28]

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging, Nature 469(7330), 385 (2011)

[29]

K. G. Thomas and P. V. Kamat, Making gold nanoparticles glow: Enhanced emission from a surface-bound fluoroprobe, J. Am. Chem. Soc. 122(11), 2655 (2000)

[30]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, Enhanced luminescence of CdSe quantum dots on gold colloids, Nano Lett. 2(12), 1449 (2002)

[31]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, Enhancement of single-molecule fluorescence detection in subwavelength apertures, Phys. Rev. Lett. 95(11), 117401 (2005)

[32]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97(1), 017402 (2006)

[33]

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96(11), 113002 (2006)

[34]

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control, Nat. Nanotechnol. 1(2), 126 (2006)

[35]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles, Nano Lett. 7(7), 2101 (2007)

[36]

Y. Chen, K. Munechika, and D. S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles, Nano Lett. 7(3), 690 (2007)

[37]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, Plasmonic enhancement of molecular fluorescence, Nano Lett. 7(2), 496 (2007)

[38]

O. Muskens, V. Giannini, J. Sanchez-Gil, and J. Gómez Rivas, Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett. 7(9), 2871 (2007)

[39]

R. M. Bakker, H. K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae, Appl. Phys. Lett. 92(4), 043101 (2008)

[40]

G. Zoriniants and W. L. Barnes, Fluorescence enhancement through modified dye molecule absorption associated with the localized surface plasmon resonances of metallic dimers, New J. Phys. 10(10), 105002 (2008)

[41]

M. Ringler, A. Schwemer, M. Wunderlich, A. Nichtl, K. Kürzinger, T. Klar, and J. Feldmann, Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators, Phys. Rev. Lett. 100(20), 203002 (2008)

[42]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods, ACS Nano 3(3), 744 (2009)

[43]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, Strong polarization dependence of plasmonenhanced fluorescence on single gold nanorods, Nano Lett. 9(11), 3896 (2009)

[44]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics 3(11), 654 (2009)

[45]

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, Enhancement and quenching regimes in metal– semiconductor hybrid optical nanosources, ACS Nano 4(2), 759 (2010)

[46]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, Size dependence of molecular fluorescence enhancement of nanoporous gold, Appl. Phys. Lett. 96(7), 073701 (2010)

[47]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. L. Plante, A. M. Munro, and D. S. Ginger, Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms, Nano Lett. 10(7), 2598 (2010)

[48]

A. M. Kern and O. J. Martin, Excitation and reemission of molecules near realistic plasmonic nanostructures, Nano Lett. 11(2), 482 (2011)

[49]

Y. C. Jun, K. C. Huang, and M. L. Brongersma, Plasmonic beaming and active control over fluorescent emission, Nat. Commun. 2, 283 (2011)

[50]

Á. Sánchez-González, S. Corni, and B. Mennucci, Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings, J. Phys. Chem. C 115(13), 5450 (2011)

[51]

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures, ACS Nano 6(2), 1438 (2012)

[52]

Y. Fu, J. Zhang, and J. R. Lakowicz, Large enhancement of single molecule fluorescence by coupling to hollow silver nanoshells, Chem. Commun. 48(78), 9726 (2012)

[53]

D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko, Plasmonic enhancement of molecular fluorescence near silver nanoparticles: Theory, modeling, and experiment, J. Phys. Chem. C 116(19), 10723 (2012)

[54]

R. Gill, L. Tian, W. R. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement, J. Phys. Chem. C 116(31), 16687 (2012)

[55]

M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, and M. F. Garcia-Parajo, Ultrabright Bowtie nanoaperture antenna probes studied by single molecule fluorescence, Nano Lett. 12(11), 5972 (2012)

[56]

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod, Angew. Chem. Int. Ed. 52(4), 1217 (2013)

[57]

Y. Fu, J. Zhang, and J. R. Lakowicz, Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures, Langmuir 29(8), 2731 (2013)

[58]

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods, ACS Nano 8(5), 4440 (2014)

[59]

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, Plasmon-controlled fluorescence: Beyond the intensity enhancement, J. Phys. Chem. Lett. 3(2), 191 (2012)

[60]

S. Khatua and M. Orrit, Probing, sensing, and fluorescence enhancement with single gold nanorods, J. Phys. Chem. Lett. 5(17), 3000 (2014)

[61]

Y. Fu, J. Zhang, and J. R. Lakowicz, Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods, J. Am. Chem. Soc. 132(16), 5540 (2010)

[62]

J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, Gold nanorods: Synthesis, characterization and applications, Coord. Chem. Rev. 249(17–18), 1870 (2005)

[63]

M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: Engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev. 35(11), 1084 (2006)

[64]

B. Wiley, Y. Sun, and Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res. 40(10), 1067 (2007)

[65]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, Shape control in gold nanoparticle synthesis, Chem. Soc. Rev. 37(9), 1783 (2008)

[66]

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, Chemical synthesis of novel plasmonic nanoparticles, Annu. Rev. Phys. Chem. 60(1), 167 (2009)

[67]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111(6), 3669 (2011)

[68]

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, Lightemitting diodes based on conjugated polymers, Nature 347(6293), 539 (1990)

[69]

H. Sirringhaus, N. Tessler, and R. H. Friend, Integrated optoelectronic devices based on conjugated polymers, Science 280(5370), 1741 (1998)

[70]

F. Jäckel, M. D. Watson, K. Müllen, and J. Rabe, Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates, Phys. Rev. Lett. 92(18), 188303 (2004)

[71]

S. Günes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107(4), 1324 (2007)

[72]

T. Huser, M. Yan, and L. J. Rothberg, Single chain spectroscopy of conformational dependence of conjugated polymer photophysics, Proc. Natl. Acad. Sci. USA 97(21), 11187 (2000)

[73]

B. J. Schwartz, Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions, Annu. Rev. Phys. Chem. 54(1), 141 (2003)

[74]

F. Schindler, J. M. Lupton, J. Feldmann, and U. Scherf, A universal picture of chromophores in-conjugated polymers derived from single-molecule spectroscopy, Proc. Natl. Acad. Sci. USA 101(41), 14695 (2004)

[75]

R. Kersting, U. Lemmer, M. Deussen, H. Bakker, R. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. Göbel, Ultrafast field-induced dissociation of excitons in conjugated polymers, Phys. Rev. Lett. 73(10), 1440 (1994)

[76]

M. Deussen, M. Scheidler, and H. Bässler, Electric fieldinduced photoluminescence quenching in thin-film lightemitting diodes based on poly(phenyl-p-phenylene vinylene), Synth. Met. 73(2), 123 (1995)

[77]

M. Esteghamatian, Z. Popovic, and G. Xu, Carrier generation process in poly (p-phenylene vinylene) by fluorescent quenching and delayed-collection-field techniques, J. Phys. Chem. 100(32), 13716 (1996)

[78]

M. Hilczer, S. Traytak, and M. Tachiya, Electric field effects on fluorescence quenching due to electron transfer,J. Chem. Phys. 115(24), 11249 (2001)

[79]

J. D. McNeill, D. B. O’Connor, D. M. Adams, P. F. Barbara, and S. B. Kämmer, Field-induced photoluminescence modulation of MEH–PPV under near-field optical excitation, J. Phys. Chem. B 105(1), 76 (2001)

[80]

T. M. Smith, N. Hazelton, L. A. Peteanu, and J. Wildeman, Electrofluorescence of MEH-PPV and its oligomers: Evidence for field-induced fluorescence quenching of single chains, J. Phys. Chem. B 110(15), 7732 (2006)

[81]

S. J. Park, A. J. Gesquiere, J. Yu, and P. F. Barbara, Charge injection and photooxidation of single conjugated polymer molecules, J. Am. Chem. Soc. 126(13), 4116 (2004)

[82]

P. Hania and I. Scheblykin, Electric field induced quenching of the fluorescence of a conjugated polymer probed at the single molecule level, Chem. Phys. Lett. 414(1–3), 127 (2005)

[83]

P. R. Hania, D. Thomsson, and I. G. Scheblykin, Host matrix dependent fluorescence intensity modulation by an electric field in single conjugated polymer chains, J. Phys. Chem. B 110(51), 25895 (2006)

[84]

F. Schindler, J. M. Lupton, J. Müller, J. Feldmann, and U. Scherf, How single conjugated polymer molecules respond to electric fields, Nat. Mater. 5(2), 141 (2006)

[85]

R. Chen, Y. Gao, G. Zhang, R. Wu, L. Xiao, and S. Jia, Electric field induced fluorescence modulation of single molecules in PMMA based on electron transfer, Int. J. Mol. Sci. 13(12), 11130 (2012)

[86]

R. Chen, G. Zhang, Y. Gao, L. Xiao, and S. Jia, Single molecules probe the polarization dynamics of poly (methyl methacrylate) in external electric field, Appl. Phys. Lett. 100(20), 203118 (2012)

[87]

D. W. Van Krevelen and K. Te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009

[88]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. Novak, Magnetic bistability in a metal-ion cluster, Nature 365(6442), 141 (1993)

[89]

X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, and M. J. Rosseinsky, Hysteretic adsorption and desorption of hydrogen by nanoporous metalorganic frameworks, Science 306(5698), 1012 (2004)

[90]

J. R. Pomerening, E. D. Sontag, and J. E. Ferrell, Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2, Nat. Cell Biol. 5(4), 346 (2003)

[91]

H. Zhou, C. Qin, R. Chen, G. Zhang, L. Xiao, and S. Jia, Electric field induced fluorescence hysteresis of single molecules in poly(methyl methacrylate), Appl. Phys. Lett. 105(15), 153301 (2014)

[92]

W. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, and U. P. Wild, Optical probing of single molecules of terrylene in a Shpol’kii matrix: A twostate single-molecule switch, J. Phys. Chem. 98(30), 7382 (1994)

[93]

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and T. Basché, Single-molecule optical switching of terrylene in p-terphenyl, Nature 387(6634), 688 (1997)

[94]

M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai, Organic chemistry: A digital fluorescent molecular photoswitch, Nature 420(6917), 759 (2002)

[95]

M. Heilemann, E. Margeat, R. Kasper, M. Sauer, and P. Tinnefeld, Carbocyanine dyes as efficient reversible single-molecule optical switch, J. Am. Chem. Soc. 127(11), 3801 (2005)

[96]

E. Rothenberg, M. Kazes, E. Shaviv, and U. Banin, Electric field induced switching of the fluorescence of single semiconductor quantum rods, Nano Lett. 5(8), 1581 (2005)

[97]

V. Meded, A. Bagrets, A. Arnold, and F. Evers, Molecular switch controlled by pulsed bias voltages, Small 5(19), 2218 (2009)

[98]

R. Wu, R. Chen, C. Qin, Y. Gao, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, An electric field induced reversible single-molecule fluorescence switch, Chem. Commun. 51(34), 7368 (2015)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (10508KB)

702

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/