Isolated structures in two-dimensional optical superlattice
Xin-Hao Zou, Bao-Guo Yang, Xia Xu, Peng-Ju Tang, Xiao-Ji Zhou
Isolated structures in two-dimensional optical superlattice
Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various “sublattice” patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal “sublattice” structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in “sublattices”. Our configurations provide unique opportunities to study particle entanglement in “lattices” formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.
optical superlattice / isolated structures / exotic lattice geometries / quantum logic gates
[1] |
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2004)
CrossRef
ADS
Google scholar
|
[2] |
T. Calarco, U. Dorner, P. S. Julienne, C. J. Williams, and P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions, Phys. Rev. A 70(1), 012306 (2004)
CrossRef
ADS
Google scholar
|
[3] |
L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, and X. Zhou, Excitation of atoms in an optical lattice driven by polychromatic amplitude modulation, Opt. Express 23(8), 10064 (2015)
CrossRef
ADS
Google scholar
|
[4] |
D. Hu, L. Niu, B. Yang, X. Chen, B. Wu, H. Xiong, and X. Zhou, Long-time nonlinear dynamical evolution for P-band ultracold atoms in an optical lattice, Phys. Rev. A 92(4), 043614 (2015)
CrossRef
ADS
Google scholar
|
[5] |
M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)
CrossRef
ADS
Google scholar
|
[6] |
C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)
CrossRef
ADS
Google scholar
|
[7] |
J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)
CrossRef
ADS
Google scholar
|
[8] |
L. Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann, and M. Lewenstein, Atomic quantum gases in Kagomé lattices, Phys. Rev. Lett. 93(3), 030601 (2004)
CrossRef
ADS
Google scholar
|
[9] |
G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)
CrossRef
ADS
Google scholar
|
[10] |
J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
CrossRef
ADS
Google scholar
|
[11] |
G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Quantum logic gates in optical lattices, Phys. Rev. Lett. 82(5), 1060 (1999)
CrossRef
ADS
Google scholar
|
[12] |
L. Jiang, A. M. Rey, O. Romero-Isart, J. J. Garca- Ripoll, A. Sanpera, and M. D. Lukin, Preparation of decoherence-free cluster states with optical superlattices, Phys. Rev. A 79(2), 022309 (2009)
CrossRef
ADS
Google scholar
|
[13] |
K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, Quantum dynamics of three coupled atomic Bose–Einstein condensates, Phys. Rev. A 63(1), 013604 (2000)
CrossRef
ADS
Google scholar
|
[14] |
M. Hiller, T. Kottos, and T. Geisel, Complexity in parametric Bose–Hubbard Hamiltonians and structural analysis of eigenstates, Phys. Rev. A 73, 061604(R) (2006)
|
[15] |
A. R. Kolovsky, Semiclassical quantization of the Bogoliubov spectrum, Phys. Rev. Lett. 99(2), 020401 (2007)
CrossRef
ADS
Google scholar
|
[16] |
R. Franzosi and V. Penna, Self-trapping mechanisms in the dynamics of three coupled Bose–Einstein condensates, Phys. Rev. A 65(1), 013601 (2001)
CrossRef
ADS
Google scholar
|
[17] |
P. Hsieh, C. Chung, J. McMillan, M. Tsai, M. Lu, N. Panoiu, and C. W. Wong, Photon transport enhanced by transverse Anderson localization in disordered superlattices, Nat. Phys. 11(3), 268 (2015)
CrossRef
ADS
Google scholar
|
[18] |
M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
CrossRef
ADS
Google scholar
|
[19] |
X. Zhou, X. Xu, X. Chen, and J. Chen, Magic wavelengths for terahertz clock transitions, Phys. Rev. A 81(1), 012115 (2010)
CrossRef
ADS
Google scholar
|
[20] |
X. Xu, B. Qing, X. Z. Chen, and X. J. Zhou, A simplified method for calculating the ac Stark shift of hyperfine levels of alkali-metal atoms, Phys. Lett. A 379(20–21), 1347 (2015)
CrossRef
ADS
Google scholar
|
[21] |
P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)
CrossRef
ADS
Google scholar
|
[22] |
A. S. Parkins and D. F. Walls, The physics of trapped dilute-gas Bose–Einstein condensates, Phys. Rep. 303(1), 1 (1998)
CrossRef
ADS
Google scholar
|
[23] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |