Superfluid response in heavy fermion superconductors

Yin Zhong, Lan Zhang, Can Shao, Hong-Gang Luo

PDF(1582 KB)
PDF(1582 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (5) : 127101. DOI: 10.1007/s11467-016-0625-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Superfluid response in heavy fermion superconductors

Author information +
History +

Abstract

Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo–Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large-N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1−xYbxCoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

Keywords

heavy fermion superconductor / Kondo lattice system / superfluid density

Cite this article

Download citation ▾
Yin Zhong, Lan Zhang, Can Shao, Hong-Gang Luo. Superfluid response in heavy fermion superconductors. Front. Phys., 2017, 12(5): 127101 https://doi.org/10.1007/s11467-016-0625-y

References

[1]
M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, 1996
[2]
T. Xiang, d-wave superconductor, Beijing: Science Publisher, 2007 (in Chinese)
[3]
C. P. Poole, R. Prozorov, H. A. Farach, and R. J. Creswick, Superconductivity, 3rd Ed., Amsterdam: Elsevier, 2014
[4]
W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Precision measurements of the temperature dependence of lin YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett. 70(25), 3999 (1993)
CrossRef ADS Google scholar
[5]
M. S. Kim, J. A. Skinta, T. R. Lemberger, A. Tsukada, and M. Naito, Magnetic penetration depth measurements of Pr2−xCexCuO4−d films on Buffered substrates: Evidence for a nodeless gap, Phys. Rev. Lett. 91(8), 087001 (2003)
CrossRef ADS Google scholar
[6]
R. Prozorov and V. G. Kogan, London penetration depth in iron-based superconductors, Rep. Prog. Phys. 74(12), 124505 (2011)
CrossRef ADS Google scholar
[7]
R. J. Ormeno, A. Sibley, C. E. Gough, S. Sebastian, and I. R. Fisher, Microwave conductivity and penetration depth in the heavy fermion superconductor CeCoIn5, Phys. Rev. Lett. 88(4), 047005 (2002)
CrossRef ADS Google scholar
[8]
S. Özcan, D. M. Broun, B. Morgan, R. K. W. Haselwimmer, J. L. Sarrao, S. Kamal, C. P. Bidinosti, P. J. Turner, M. Raudsepp, and J. R. Waldram, London penetration depth measurements of the heavy-fermion superconductor CeCoIn5 near a magnetic quantum critical point, Europhys. Lett. 62(3), 412 (2003)
CrossRef ADS Google scholar
[9]
E. E. M. Chia, D. J. Van Harlingen, M. B. Salamon, B. D. Yanoff, I. Bonalde, and J. L. Sarrao, Nonlocality and strong coupling in the heavy fermion superconductor CeCoIn5: A penetration depth study, Phys. Rev. B 67(1), 014527 (2003)
CrossRef ADS Google scholar
[10]
K. Hashimoto, Y. Mizukami, R. Katsumata, H. Shishido, M. Yamashita, H. Ikeda, Y. Matsuda, J. A. Schlueter, J. D. Fletcher, A. Carrington, D. Gnida, D. Kaczorowski, and T. Shibauchi, Anomalous superfluid density in quantum critical superconductors, Proc. Natl. Acad. Sci. USA 110(9), 3293 (2013)
CrossRef ADS Google scholar
[11]
C. J. S. Truncik, W. A. Huttema, P. J. Turner, S. Özcan, N. C. Murphy, P. R. Carrière, E. Thewalt, K. J. Morse, A. J. Koenig, J. L. Sarrao, and D. M. Broun, Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy, Nat. Commun. 4, 2477 (2013)
CrossRef ADS Google scholar
[12]
L. Shu, D. E. MacLaughlin, C. M. Varma, O. O. Bernal, P. C. Ho, R. H. Fukuda, X. P. Shen, and M. B. Maple, Landau renormalizations of superfluid density in the heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 113(16), 166401 (2014)
CrossRef ADS Google scholar
[13]
H. Kim, M. A. Tanatar, R. Flint, C. Petrovic, R. Hu, B. D. White, I. K. Lum, M. B. Maple, and R. Prozorov, Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5, Phys. Rev. Lett. 114(2), 027003 (2015)
CrossRef ADS Google scholar
[14]
C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, Heavy-fermion superconductivity in Ce- CoIn5 at 2.3 K, J. Phys.: Condens. Matter 13(17), 337 (2001)
CrossRef ADS Google scholar
[15]
R. Movshovich, M. Jaime, J. D. Thompson, C. Petrovic, Z. Fisk, P. G. Pagliuso, and J. L. Sarrao, Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies, Phys. Rev. Lett. 86(22), 5152 (2001)
CrossRef ADS Google scholar
[16]
K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, and K. Machida, Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and dx2−y2 pairing symmetry, Phys. Rev. Lett. 104(3), 037002 (2010)
CrossRef ADS Google scholar
[17]
K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 87(5), 057002 (2001)
CrossRef ADS Google scholar
[18]
T. Tayama, A. Harita, T. Sakakibara, Y. Haga, H. Shishido, R. Settai and Y. Onuki, Unconventional heavy-fermion superconductor CeCoIn5: dc magnetization study at temperatures down to 50 mK, Phys. Rev. B 65, 180504(R) (2002)
[19]
Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B. Maple, and J. L. Sarrao, NMR and NQR studies of the heavy fermion superconductors CeTIn5 (T=Co and Ir), Phys. Rev. B 64(13), 134526 (2001)
CrossRef ADS Google scholar
[20]
S. Ernst, S. Wirth, F. Steglich, Z. Fisk, J. L. Sarrao, and J. D. Thompson, Scanning tunneling microscopy studies on CeCoIn5 and CeIrIn5, Phys. Status Solidi B 247(3), 624 (2010)
CrossRef ADS Google scholar
[21]
C. Stock, C. Broholm, J. Hudis, H. J. Kang, and C. Petrovic, Spin resonance in the d-wave superconductor CeCoIn5, Phys. Rev. Lett. 100(8), 087001 (2008)
CrossRef ADS Google scholar
[22]
M. P. Allan, F. Massee, D. K. Morr, J. Van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)
CrossRef ADS Google scholar
[23]
B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)
CrossRef ADS Google scholar
[24]
J. Van Dyke, F. Massee, M. P. Allan, J. C. Davis, C. Petrovic, and D. K. Morr, Direct evidence for a magnetic f-electron mediated pairing mechanism of heavyfermion superconductivity in CeCoIn5, Proc. Natl. Acad. Sci. USA 111(32), 11663 (2014)
CrossRef ADS Google scholar
[25]
Y. Xu, J. K. Dong, L. I. Lum, J. Zhang, X. C. Hong, L. P. He, K. F. Wang, Y. C. Ma, C. Petrovic, M. B. Maple, L. Shu, and S. Y. Li, Universal heat conduction in Ce1−xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap, Phys. Rev. B 93(6), 064502 (2016)
CrossRef ADS Google scholar
[26]
O. Erten, R. Flint, and P. Coleman, Molecular pairing and fully gapped superconductivity in Yb-doped Ce- CoIn5, Phys. Rev. Lett. 114(2), 027002 (2015)
CrossRef ADS Google scholar
[27]
C. M. Varma, K. Miyake, and S. Schmitt-Rink, London penetration depth of heavy-fermion superconductors, Phys. Rev. Lett. 57(5), 626 (1986)
CrossRef ADS Google scholar
[28]
P. Coleman, A. M. Tsvelik, N. Andrei, and H. Y. Kee, Co-operative Kondo effect in the two-channel Kondo lattice, Phys. Rev. B 60(5), 3608 (1999)
CrossRef ADS Google scholar
[29]
P. Coleman and N. Andrei, Kondo-stabilised spin liquids and heavy fermion superconductivity, J. Phys.: Condens. Matter 1(26), 4057 (1989)
CrossRef ADS Google scholar
[30]
Y. Liu, H. Li, G. M. Zhang, and L. Yu, d-wave superconductivity induced by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model, Phys. Rev. B 86(2), 024526 (2012)
CrossRef ADS Google scholar
[31]
Y. Liu, G. M. Zhang, and L. Yu, Pairing symmetry of heavy fermion superconductivity in the two-dimensional Kondo–Heisenberg lattice model, Chin. Phys. Lett. 31(8), 087102 (2014)
CrossRef ADS Google scholar
[32]
J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)
CrossRef ADS Google scholar
[33]
D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84(4), 1383 (2012)
CrossRef ADS Google scholar
[34]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high temperature superconducting cuprates: The plain vanilla version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
CrossRef ADS Google scholar
[35]
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
CrossRef ADS Google scholar
[36]
Y. Zhong, L. Zhang, H. T. Lu, and H. G. Luo, Fermionology in the Kondo–Heisenberg model: the case of CeCoIn5, Eur. Phys. J. B 88(9), 238 (2015)
CrossRef ADS Google scholar
[37]
P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge: Cambridge University Press, 2015
CrossRef ADS Google scholar
[38]
C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys. 81(4), 1551 (2009)
CrossRef ADS Google scholar
[39]
L. Shu, D. E. MacLaughlin, W. P. Beyermann, R. H. Heffner, G. D. Morris, O. O. Bernal, F. D. Callaghan, J. E. Sonier, W. M. Yuhasz, N. A. Frederick, and M. B. Maple, Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4Sb12, Phys. Rev. B 79(17), 174511 (2009)
CrossRef ADS Google scholar
[40]
X. Y. Tee, H. G. Luo, T. Xiang, D. Vandervelde, M. B. Salamon, H. Sugawara, H. Sato, C. Panagopoulos, and E. E. M. Chia, Penetration depth study of LaOs4Sb12: Multiband s-wave superconductivity, Phys. Rev. B 86(6), 064518 (2012)
CrossRef ADS Google scholar
[41]
T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)
CrossRef ADS Google scholar
[42]
Y. Zhong, K. Liu, Y. F. Wang, Y. Q. Wang, and H. G. Luo, Half-filled Kondo lattice on the honeycomb lattice, Eur. Phys. J. B 86(5), 195 (2013)
CrossRef ADS Google scholar
[43]
L. Zhang, Y. F. Wang, Y. Zhong, and H. G. Luo, Extended s-wave pairing symmetry on the triangular lattice heavy fermion system, Eur. Phys. J. B 88(10), 267 (2015)
CrossRef ADS Google scholar
[44]
A. Ramires and P. Coleman, Supersymmetric approach to heavy fermion systems, Phys. Rev. B 93(3), 035120 (2016)
CrossRef ADS Google scholar
[45]
N. Read and D. Newns, On the solution of the Coqblin- Schrieffer Hamiltonian by the large-N expansion technique, J. Phys. C 16, 3273 (1983)
[46]
P. Coleman, Mixed valence as an almost broken symmetry, Phys. Rev. B 35(10), 5072 (1987)
CrossRef ADS Google scholar
[47]
M. Z. Asadzadeh, M. Fabrizio, and F. Becca, Superconductivity from spoiling magnetism in the Kondo lattice model, Phys. Rev. B 90(20), 205113 (2014)
CrossRef ADS Google scholar
[48]
P. Coleman and A. H. Nevidomskyy, Frustration and the Kondo effect in heavy fermion materials, J. Low Temp. Phys. 161(1–2), 182 (2010)
CrossRef ADS Google scholar
[49]
G. Kotliar and J. Liu, Superexchange mechanism and dwave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
CrossRef ADS Google scholar
[50]
A. Koitzsch, I. Opahle, S. Elgazzar, S. V. Borisenko, J. Geck, V. B. Zabolotnyy, D. Inosov, H. Shiozawa, M. Richter, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, and R. Follath, Electronic structure of Ce- CoIn5 from angle-resolved photoemission spectroscopy, Phys. Rev. B 79(7), 075104 (2009)
CrossRef ADS Google scholar
[51]
X. W. Jia, Y. Liu, L. Yu, J. F. He, L. Zhao, W. T. Zhang, H. Y. Liu, G. D. Liu, S. L. He, J. Zhang, W. Lu, Y. Wu, X. L. Dong, L. L. Sun, G. L. Wang, Y. Zhu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Growth, characterization and fermi surface of heavy fermion Ce- CoIn5 superconductor, Chin. Phys. Lett. 28(5), 057401 (2011)
CrossRef ADS Google scholar
[52]
L. Dudy, J. D. Denlinger, L. Shu, M. Janoschek, J. W. Allen, and M. B. Maple, Yb valence change in Ce1−xYbxCoIn5 from spectroscopy and bulk properties, Phys. Rev. B 88(16), 165118 (2013)
CrossRef ADS Google scholar
[53]
A. Polyakov, O. Ignatchik, B. Bergk, K. Götze, A. D. Bianchi, S. Blackburn, B. Prévost, G. Seyfarth, M. Côté, D. Hurt, C. Capan, Z. Fisk, R. G. Goodrich, I. Sheikin, M. Richter, and J. Wosnitza, Fermi-surface evolution in Yb-substituted CeCoIn5, Phys. Rev. B 85(24), 245119 (2012)
CrossRef ADS Google scholar
[54]
H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Pressure-induced superconductivity in Quasi-2D CeRhIn5, Phys. Rev. Lett. 84(21), 4986 (2000)
CrossRef ADS Google scholar
[55]
T. Park, F. Ronning, H.-Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5, Nature (London) 440, 65 (2006)
CrossRef ADS Google scholar
[56]
P. J. Hirschfeld and N. Goldenfeld, Effect of strong scattering on the low-temperature penetration depth of a dwave superconductor, Phys. Rev. B 48(6), 4219 (1993)
CrossRef ADS Google scholar
[57]
I. Kosztin and A. J. Leggett, Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett. 79(1), 135 (1997)
CrossRef ADS Google scholar
[58]
E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1582 KB)

Accesses

Citations

Detail

Sections
Recommended

/