Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials

Chen-Pu Li, Hong-Bin Chen, Zhi-Gang Zheng

PDF(1034 KB)
PDF(1034 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (4) : 120502. DOI: 10.1007/s11467-016-0622-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials

Author information +
History +

Abstract

In this study, we investigate the collective directed transport of coupled Brownian particles in spatially symmetric periodic potentials under time-periodic pulsating modulations. We find that the coupling between two particles can induce symmetry breaking and consequently collective directed motion. Moreover, the direction of motion can be reversed under certain conditions. The dependence of directed current on various parameters is systematically studied. reverse motion can be achieved by modulating the coupling free length and the phase shift of the pulsating potential. The dynamical mechanism of these transport properties is understood in terms of the effective-potential theory and the space-time transformation invariance. The directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the coupling strength, pulsating frequency, or noise intensity.

Keywords

coupled Brownian motors / ratchet / effective potential / symmetric periodic potential / noise

Cite this article

Download citation ▾
Chen-Pu Li, Hong-Bin Chen, Zhi-Gang Zheng. Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials. Front. Phys., 2017, 12(4): 120502 https://doi.org/10.1007/s11467-016-0622-1

References

[1]
P. Reimann and M. Evstigneev, Pulsating potential ratchet, Europhys. Lett. 78(5), 50004 (2007)
CrossRef ADS Google scholar
[2]
F. Marchesoni, Transport properties in disordered ratchet potentials, Phys. Rev. E 56(3), 2492 (1997)
CrossRef ADS Google scholar
[3]
J. D. Bao and Y. Z. Zhuo, Biasing fluctuation model for directional stepping motion of molecular motor, Chin. Sci. Bull. 43(22), 1879 (1998)
CrossRef ADS Google scholar
[4]
P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
CrossRef ADS Google scholar
[5]
H. Y. Wang and J. D. Bao, Kramers-type elastic ratchet model for ATP gating during kinesins mechanochemical cycle, Physica A 389(3), 433 (2010)
CrossRef ADS Google scholar
[6]
Z. G. Zheng, Directed transport of interacting particle systems: Recent progress, Commum. Theor. Phys. 43(1), 107 (2005)
CrossRef ADS Google scholar
[7]
B. O. Yan, R. M. Miura, and Y. D. Chen, Direction reversal of fluctuation-induced biased Brownian motion on distorted ratchets, J. Theor. Biol. 210(2), 141 (2001)
CrossRef ADS Google scholar
[8]
A. Pototsky, N. B. Janson, F. Marchesoni, and S. Savelev, Dipole rectification in an oscillating electric field, Europhys. Lett. 88(3), 30003 (2009)
CrossRef ADS Google scholar
[9]
Z. G. Zheng, G. Hu, and B. Hu, Collective directional transport in coupled nonlinear oscillators without external bias, Phys. Rev. Lett. 86(11), 2273 (2001)
CrossRef ADS Google scholar
[10]
S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)
CrossRef ADS Google scholar
[11]
O. M. Braun, R. Ferrando, and G. E. Tommei, Stimulated diffusion of an adsorbed dimer, Phys. Rev. E 68(5), 051101 (2003)
CrossRef ADS Google scholar
[12]
S. Gonçalves, C. Fusco, A. R. Bishop, and V. M. Kenkre, Bistability and hysteresis in the sliding friction of a dimer, Phys. Rev. B 72(19), 195418 (2005)
CrossRef ADS Google scholar
[13]
E. Heinsalu, M. Patriarca, and F. Marchesoni, Dimer diffusion in a washboard potential, Phys. Rev. E 77(2), 021129 (2008)
CrossRef ADS Google scholar
[14]
A. E. Filippov, J. Klafter, and M. Urbakh, Friction through dynamical formation and rupture of molecular bonds, Phys. Rev. Lett. 92(13), 135503 (2004)
CrossRef ADS Google scholar
[15]
S. Maier, Y. Sang, T. Filleter, M. Grant, R. Bennewitz, E. Gnecco, and E. Meyer, Fluctuations and jump dynamics in atomic friction experiments, Phys. Rev. B 72(24), 245418 (2005)
CrossRef ADS Google scholar
[16]
H. Y. Wang and J. D. Bao, Transport coherence in coupled Brownian ratchet, Physica A 374(1), 33 (2007)
CrossRef ADS Google scholar
[17]
J. L. Mateos, A random walker on a ratchet, Physica A 351(1), 79 (2005)
CrossRef ADS Google scholar
[18]
S. E. Mangioni and H. S. Wio, A random walker on a ratchet potential: effect of a non Gaussian noise, Eur. Phys. J. B 61(1), 67 (2008)
CrossRef ADS Google scholar
[19]
E. M. Craig, M. J. Zuckermann, and H. Linke, Mechanical coupling in flashing ratchets, Phys. Rev. E 73(5), 051106 (2006)
CrossRef ADS Google scholar
[20]
J. Menche and L. Schimansky-Geier, Two particles with bistable coupling on a ratchet, Phys. Lett. A 359(2), 90 (2006)
CrossRef ADS Google scholar
[21]
M. Evstigneev, S. von Gehlen, and P. Reimann, Interaction-controlled Brownian motion in a tilted periodic potential, Phys. Rev. E 79(1), 011116 (2009)
CrossRef ADS Google scholar
[22]
C. Lutz, M. Reichert, H. Stark, and C. Bechinger, Surmounting barriers: The benefit of hydrodynamic interactions, Europhys. Lett. 74(4), 719 (2006)
CrossRef ADS Google scholar
[23]
H. Y. Wang and J. D. Bao, The roles of ratchet in transport of two coupled particles, Physica A 337(1–2), 13 (2004)
CrossRef ADS Google scholar
[24]
Z. G. Zheng, M. C. Cross, and G. Hu, Collective directed transport of symmetrically coupled lattices in symmetric periodic potentials, Phys. Rev. Lett. 89(15), 154102 (2002)
CrossRef ADS Google scholar
[25]
Z. G. Zheng and H. B. Chen, Cooperative twodimensional directed transport, Europhys. Lett. 92(3), 30004 (2010)
CrossRef ADS Google scholar
[26]
S. von Gehlen, M. Evstigneev, and P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom, Phys. Rev. E 77(3), 031136 (2008)
CrossRef ADS Google scholar
[27]
A. D. Rogat and K. G. Miler, A role for myosin VI in actin dynamics at sites of membrane remodeling during Drosophila spermatogenesis, J. Cell Sci. 115(24), 4855 (2002)
CrossRef ADS Google scholar
[28]
H. Park, A. Li, L. Q. Chen, A. Houdusse, P. R. Selvin, and H. L. Sweeney, The unique insert at the end of the myosin VI motor is the sole determinant of directionality, Proc. Natl. Acad. Sci. USA 104(3), 778 (2007)
CrossRef ADS Google scholar
[29]
E. M. Delacruz, E. M. Ostap, and H. L. Sweeney, Kinetic mechanism and regulation of myosin VI, J. Biochem. 276(34), 32373 (2001)
[30]
S. Nishikawa, K. Homma, Y. Komori, M. Iwaki, T. Wazawa, A. Hikikoshi Iwone, J. Saito, R. Ikebe, E. Katayama, T. Yanagida, and M. Ikebe, Class VI myosin moves processively along Actin filaments backward with large steps, Biochem. Biophys. Res. Commun. 290(1), 311 (2002)
CrossRef ADS Google scholar
[31]
J. C. Chen and G. Z. Su, Thermodynamics and Statistical Physics (Vol.1), Beijing: Science Press, 2010, pp 268–282
[32]
J. D. Bao, Stochastic Simulation Method of Classical and Quantum Dissipative Systems, Beijing: Science Press, 2009, pp 102–135
[33]
Z. G. Zheng, Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear System, Beijing: Higher Education Press, 2004, pp 278–347
[34]
H. B. Chen, Q. W. Wang, and Z. G. Zheng, Deterministic directed transport of inertial particles in a flashing ratchet potential, Phys. Rev. E 71(3), 031102 (2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1034 KB)

Accesses

Citations

Detail

Sections
Recommended

/