Quantum cellular automata and free quantum field theory

Giacomo Mauro D’Ariano, Paolo Perinottiy

PDF(498 KB)
PDF(498 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 120301. DOI: 10.1007/s11467-016-0616-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum cellular automata and free quantum field theory

Author information +
History +

Abstract

In a series of recent papers [14] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors.

In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

Keywords

quantum automata / quantum walks / quantum fields axiomatics / Planck scale

Cite this article

Download citation ▾
Giacomo Mauro D’Ariano, Paolo Perinottiy. Quantum cellular automata and free quantum field theory. Front. Phys., 2017, 12(1): 120301 https://doi.org/10.1007/s11467-016-0616-z

References

[1]
G. M. D’Ariano and P. Perinotti, Derivation of the Dirac equation from principles of information processing, Phys. Rev. A 90(6), 062106 (2014)
CrossRef ADS Google scholar
[2]
A. Bisio, G. M. D’Ariano, and A. Tosini, Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension, Ann. Phys. 354, 244 (2015)
CrossRef ADS Google scholar
[3]
A. Bisio, G. M. D’Ariano, and A. Tosini, Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential, Phys. Rev. A 88(3), 032301 (2013)
CrossRef ADS Google scholar
[4]
A. Bisio, G. M. D’Ariano, and P. Perinotti, Quantum cellular automaton theory of light, Ann. Phys. 368, 177 (2016)
CrossRef ADS Google scholar
[5]
G. Chiribella, G. D’Ariano, and P. Perinotti, Informational derivation of quantum theory, Phys. Rev. A 84(012311), 012311 (2011)
CrossRef ADS Google scholar
[6]
G. M. D’Ariano and P. Perinotti, Quantum theory is an Information Theory, Found. Phys. 46, 269 (2016)
CrossRef ADS Google scholar
[7]
L. Hardy, Quantum theory from five reasonable axioms, arXiv: quant-ph/0101012 (2001)
[8]
C. A. Fuchs, Quantum Mechanics as Quantum Information (and only a little more), arXiv: quant-ph/0205039 (2002)
[9]
G. M. D. Ariano, On the missing axiom of quantum mechanicss, AIP Conf. Proc. 810(1), 114 (2006)
CrossRef ADS Google scholar
[10]
G. M. D’Ariano, Probabilistic Theories: What is Special about Quantum Mechanics? in: Philosophy of Quantum Information and Entanglement, <Eds/>. A. Bokulich and G. Jaeger, Cambridge UK: Cambridge University Press, 2010, p. 85
CrossRef ADS Google scholar
[11]
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81(6), 062348 (2010)
CrossRef ADS Google scholar
[12]
J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef ADS Google scholar
[13]
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
CrossRef ADS Google scholar
[14]
R. Bousso, Light Sheets and Bekenstein’s Entropy Bound, Phys. Rev. Lett. 90(12), 121302 (2003)
CrossRef ADS Google scholar
[15]
R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6), 467 (1982)
CrossRef ADS Google scholar
[16]
G. Grössing and A. Zeilinger, Quantum cellular automata, Complex Syst. 2(2), 197 (1988)
[17]
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef ADS Google scholar
[18]
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Wa-trous, in: Proceedings of the thirty-third annual ACM sym-posium on Theory of computing (ACM, 2001), pp 37–49
[19]
I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Phys. Rev. D 49(12), 6920 (1994)
CrossRef ADS Google scholar
[20]
D. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85(5), 551 (1996)
[21]
J. Yepez, Relativistic path integral as a lattice-based quantum algorithm, Quantum Inform. Process. 4(6), 471 (2006)
CrossRef ADS Google scholar
[22]
G. M. D’Ariano, A computational grand-unified theory, 2010
[23]
G. D’Ariano, CP1232 quantum theory, Reconsideration of Foundations 5, 3 (2010)
[24]
G. D’Ariano, Advances in quantum theory, AIP Conf. Proc. 1327, 7 (2011)
[25]
G. D’Ariano, The Dirac quantum automaton: A preview, arXiv: 1211.2479 (2012)
[26]
G. M. D’Ariano, The quantum field as a quantum computer, Phys. Lett. A 376(5), 697 (2012)
CrossRef ADS Google scholar
[27]
G. M. D’Ariano, A quantum-digital universe, Adv. Sci. Lett. 17(1), 130 (2012)
CrossRef ADS Google scholar
[28]
G. M. D’Ariano, A quantum digital universe, Il Nuovo Saggiatore 28, 13 (2012)
CrossRef ADS Google scholar
[29]
P. Arrighi, V. Nesme, and M. Forets, The Dirac equation as a quantum walk: higher dimensions, observational convergence, J. Phys. A 47(46), 465302 (2014)
CrossRef ADS Google scholar
[30]
T. C. Farrelly and A. J. Short, Discrete spacetime and relativistic quantum particles, arXiv: 1312.2852 (2013)
[31]
G. M. D’Ariano and P. Perinotti, The Dirac quantum automaton: A short review, Phys. Scr. 2014, 014014 (2014)
CrossRef ADS Google scholar
[32]
A. Bibeau-Delisle, A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini, Doubly special relativity from quantum cellular automata, EPL (Europhys. Lett.) 109(5), 50003 (2015)
CrossRef ADS Google scholar
[33]
A. Bisio, G. M. D’Ariano, and P. Perinotti, How important is i" in QFT? arXiv: 1503.0101 (2015)
[34]
M. Erba, Non-Abelian quantum walks and renormalization, Master Thesis, 2014
[35]
S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298(1), 210 (2002)
CrossRef ADS Google scholar
[36]
G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory, Int. J. Mod. Phys. A 29(17), 1430025 (2014)
CrossRef ADS Google scholar
[37]
G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, Fermionic computation is non-local tomographic and violates monogamy of entanglement, EPL(Europhys. Lett.) 107(2), 20009 (2014)
CrossRef ADS Google scholar
[38]
P. de la Harpe, Topics in Geometric Group Theory, The University of Chicago Press, 2Ed., 2003
[39]
M. Gromov, in: Proc. International Congress of Mathematicians, Vol. 1, p. 2, 1984
[40]
In the present case local systems are local Fermionic modes. For a detailed description of the Fermionic theory, see Refs. [36, 37].

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(498 KB)

Accesses

Citations

Detail

Sections
Recommended

/