Quantum cellular automata and free quantum field theory
Giacomo Mauro D’Ariano, Paolo Perinottiy
Quantum cellular automata and free quantum field theory
In a series of recent papers [
In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
quantum automata / quantum walks / quantum fields axiomatics / Planck scale
[1] |
G. M. D’Ariano and P. Perinotti, Derivation of the Dirac equation from principles of information processing, Phys. Rev. A 90(6), 062106 (2014)
CrossRef
ADS
Google scholar
|
[2] |
A. Bisio, G. M. D’Ariano, and A. Tosini, Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension, Ann. Phys. 354, 244 (2015)
CrossRef
ADS
Google scholar
|
[3] |
A. Bisio, G. M. D’Ariano, and A. Tosini, Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential, Phys. Rev. A 88(3), 032301 (2013)
CrossRef
ADS
Google scholar
|
[4] |
A. Bisio, G. M. D’Ariano, and P. Perinotti, Quantum cellular automaton theory of light, Ann. Phys. 368, 177 (2016)
CrossRef
ADS
Google scholar
|
[5] |
G. Chiribella, G. D’Ariano, and P. Perinotti, Informational derivation of quantum theory, Phys. Rev. A 84(012311), 012311 (2011)
CrossRef
ADS
Google scholar
|
[6] |
G. M. D’Ariano and P. Perinotti, Quantum theory is an Information Theory, Found. Phys. 46, 269 (2016)
CrossRef
ADS
Google scholar
|
[7] |
L. Hardy, Quantum theory from five reasonable axioms, arXiv: quant-ph/0101012 (2001)
|
[8] |
C. A. Fuchs, Quantum Mechanics as Quantum Information (and only a little more), arXiv: quant-ph/0205039 (2002)
|
[9] |
G. M. D. Ariano, On the missing axiom of quantum mechanicss, AIP Conf. Proc. 810(1), 114 (2006)
CrossRef
ADS
Google scholar
|
[10] |
G. M. D’Ariano, Probabilistic Theories: What is Special about Quantum Mechanics? in: Philosophy of Quantum Information and Entanglement, <Eds/>. A. Bokulich and G. Jaeger, Cambridge UK: Cambridge University Press, 2010, p. 85
CrossRef
ADS
Google scholar
|
[11] |
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81(6), 062348 (2010)
CrossRef
ADS
Google scholar
|
[12] |
J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7(8), 2333 (1973)
CrossRef
ADS
Google scholar
|
[13] |
S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
CrossRef
ADS
Google scholar
|
[14] |
R. Bousso, Light Sheets and Bekenstein’s Entropy Bound, Phys. Rev. Lett. 90(12), 121302 (2003)
CrossRef
ADS
Google scholar
|
[15] |
R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6), 467 (1982)
CrossRef
ADS
Google scholar
|
[16] |
G. Grössing and A. Zeilinger, Quantum cellular automata, Complex Syst. 2(2), 197 (1988)
|
[17] |
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
CrossRef
ADS
Google scholar
|
[18] |
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Wa-trous, in: Proceedings of the thirty-third annual ACM sym-posium on Theory of computing (ACM, 2001), pp 37–49
|
[19] |
I. Bialynicki-Birula, Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Phys. Rev. D 49(12), 6920 (1994)
CrossRef
ADS
Google scholar
|
[20] |
D. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85(5), 551 (1996)
|
[21] |
J. Yepez, Relativistic path integral as a lattice-based quantum algorithm, Quantum Inform. Process. 4(6), 471 (2006)
CrossRef
ADS
Google scholar
|
[22] |
G. M. D’Ariano, A computational grand-unified theory, 2010
|
[23] |
G. D’Ariano, CP1232 quantum theory, Reconsideration of Foundations 5, 3 (2010)
|
[24] |
G. D’Ariano, Advances in quantum theory, AIP Conf. Proc. 1327, 7 (2011)
|
[25] |
G. D’Ariano, The Dirac quantum automaton: A preview, arXiv: 1211.2479 (2012)
|
[26] |
G. M. D’Ariano, The quantum field as a quantum computer, Phys. Lett. A 376(5), 697 (2012)
CrossRef
ADS
Google scholar
|
[27] |
G. M. D’Ariano, A quantum-digital universe, Adv. Sci. Lett. 17(1), 130 (2012)
CrossRef
ADS
Google scholar
|
[28] |
G. M. D’Ariano, A quantum digital universe, Il Nuovo Saggiatore 28, 13 (2012)
CrossRef
ADS
Google scholar
|
[29] |
P. Arrighi, V. Nesme, and M. Forets, The Dirac equation as a quantum walk: higher dimensions, observational convergence, J. Phys. A 47(46), 465302 (2014)
CrossRef
ADS
Google scholar
|
[30] |
T. C. Farrelly and A. J. Short, Discrete spacetime and relativistic quantum particles, arXiv: 1312.2852 (2013)
|
[31] |
G. M. D’Ariano and P. Perinotti, The Dirac quantum automaton: A short review, Phys. Scr. 2014, 014014 (2014)
CrossRef
ADS
Google scholar
|
[32] |
A. Bibeau-Delisle, A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini, Doubly special relativity from quantum cellular automata, EPL (Europhys. Lett.) 109(5), 50003 (2015)
CrossRef
ADS
Google scholar
|
[33] |
A. Bisio, G. M. D’Ariano, and P. Perinotti, How important is i" in QFT? arXiv: 1503.0101 (2015)
|
[34] |
M. Erba, Non-Abelian quantum walks and renormalization, Master Thesis, 2014
|
[35] |
S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Ann. Phys. 298(1), 210 (2002)
CrossRef
ADS
Google scholar
|
[36] |
G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, The Feynman problem and fermionic entanglement: Fermionic theory versus qubit theory, Int. J. Mod. Phys. A 29(17), 1430025 (2014)
CrossRef
ADS
Google scholar
|
[37] |
G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini, Fermionic computation is non-local tomographic and violates monogamy of entanglement, EPL(Europhys. Lett.) 107(2), 20009 (2014)
CrossRef
ADS
Google scholar
|
[38] |
P. de la Harpe, Topics in Geometric Group Theory, The University of Chicago Press, 2Ed., 2003
|
[39] |
M. Gromov, in: Proc. International Congress of Mathematicians, Vol. 1, p. 2, 1984
|
[40] |
In the present case local systems are local Fermionic modes. For a detailed description of the Fermionic theory, see Refs. [36, 37].
|
/
〈 | 〉 |