Spin-resolved quantum transport in graphene-based nanojunctions
Jian-Wei Li, Bin Wang, Yun-Jin Yu, Ya-Dong Wei, Zhi-Zhou Yu, Yin Wang
Spin-resolved quantum transport in graphene-based nanojunctions
First-principles calculations were performed to explore the spin-resolved electronic and thermoelectric transport properties of a series of graphene-nanoribbon-based nanojunctions. By flipping the magnetic moments in graphene leads from parallel to antiparallel, very large tunneling magnetoresistance can be obtained under different gate voltages for all the structures. Spin-resolved alternating-current conductance increases versus frequency for the short nanojunctions but decreases for the long nanojunctions. With increasing junction length, the behavior of the junctions changes from capacitive-like to inductive-like. Because of the opposite signs of spin-up thermopower and spin-down thermopower near the Fermi level, pure spin currents can be obtained and large figures of merit can be achieved by adjusting the gate voltage and chemical potential for all the nanojunctions.
TMR / AC conductance / thermoelectric transport / NEGF-DFT
[1] |
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
CrossRef
ADS
Google scholar
|
[2] |
C. Dekker, S. J. Tans, and A. R. M. Verschueren, Room temperature transistor based on a single carbon nanotube,Nature 393(6680), 49 (1998)
CrossRef
ADS
Google scholar
|
[3] |
B. Q. Xu and N. J. Tao, Measurements of single-molecule electromechanical properties, Science 301(5637), 1121 (2003)
CrossRef
ADS
Google scholar
|
[4] |
S. V. Aradhya and L. Venkataraman, Single-molecule junctions beyond electronic transport, Nat. Nanotechnol. 8(6), 399 (2013)
CrossRef
ADS
Google scholar
|
[5] |
W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
CrossRef
ADS
Google scholar
|
[6] |
Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
CrossRef
ADS
Google scholar
|
[7] |
W. Zhu, A. M. Guo, and Q. F. Sun, Electronic transport through tetrahedron-structured DNA-like system, Front. Phys. 9(6), 774 (2014)
CrossRef
ADS
Google scholar
|
[8] |
W. Ji, H. Q. Xu, and H. Guo, Quantum description of transport phenomena: Recent progress, Front. Phys. 9(6), 671 (2014)
CrossRef
ADS
Google scholar
|
[9] |
K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature 490(7419), 192 (2012)
CrossRef
ADS
Google scholar
|
[10] |
M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, Etching of graphene devices with a helium ion beam, ACS Nano 3(9), 2674 (2009)
CrossRef
ADS
Google scholar
|
[11] |
L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Anisotropic etching and nanoribbon formation in single-layer graphene, Nano Lett. 9(7), 2600 (2009)
CrossRef
ADS
Google scholar
|
[12] |
P. Avouris, Z. H. Chen, and V. Perebeinos, Carbonbased electronics, Nat. Nanotechnol. 2(10), 605 (2007)
CrossRef
ADS
Google scholar
|
[13] |
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
CrossRef
ADS
Google scholar
|
[14] |
Z. H. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
CrossRef
ADS
Google scholar
|
[15] |
X. F. Li and Y. Luo, Conductivity of carbon-based molecular junctions from ab-initiomethods, Front. Phys. 9(6), 748 (2014)
CrossRef
ADS
Google scholar
|
[16] |
B. Wang, J. Wang, and H. Guo, Ab initio calculation of transverse spin current in graphene nanostructures, Phys. Rev. B 79(16), 165417 (2009)
CrossRef
ADS
Google scholar
|
[17] |
B. Wang, R. Chu, J. Wang, and H. Guo, Firstprinciples calculation of chiral current and quantum selfinductance of carbon nanotubes, Phys. Rev. B 80(23), 235430 (2009)
CrossRef
ADS
Google scholar
|
[18] |
B. Wang, and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
CrossRef
ADS
Google scholar
|
[19] |
J. Wang, Time-dependent quantum transport theory from non-equilibrium Green’s function approach, J. Comput. Electron. 12(3), 343 (2013)
CrossRef
ADS
Google scholar
|
[20] |
Y. H. Kwok, Y. Zhang, and G. H. Chen, Timedependent density functional theory for quantum transport, Front. Phys. 9(6), 698 (2014)
CrossRef
ADS
Google scholar
|
[21] |
L. Liao, Y. C. Lin, M. Q. Bao, R. Cheng, J. W. Bai, Y. A. Liu, Y. Q. Qu, K. L. Wang, Y. Huang, and X. F. Duan, High-speed graphene transistors with a selfaligned nanowire gate, Nature 467(7313), 305 (2010)
CrossRef
ADS
Google scholar
|
[22] |
Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. N. Sun, Y. Q. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, Wafer-Scale Graphene Integrated Circuit, Science 332(6035), 1294 (2011)
CrossRef
ADS
Google scholar
|
[23] |
C. Sire, F. Ardiaca, S. Lepilliet, J.W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, and V. Derycke, Flexible gigahertz transistors derived from solution-based singlelayer graphene, Nano Lett. 12(3), 1184 (2012)
CrossRef
ADS
Google scholar
|
[24] |
N. Petrone, I. Meric, J. Hone, and K. L. Shepard, Graphene field-effect transistors with gigahertzfrequency power gain on flexible substrates, Nano Lett. 13(1), 121 (2013)
CrossRef
ADS
Google scholar
|
[25] |
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B 74(8), 085324 (2006)
CrossRef
ADS
Google scholar
|
[26] |
B. Wang, Y. Xing, L. Zhang, and J. Wang, Transient dynamics of molecular devices under a steplike pulse bias, Phys. Rev. B 81(12), 121103(R) (2010)
|
[27] |
Y. X. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B 82(20), 205112 (2010)
CrossRef
ADS
Google scholar
|
[28] |
L. Zhang, Y. X. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B 86(15), 155438 (2012)
CrossRef
ADS
Google scholar
|
[29] |
L. Zhang, J. Chen, and J. Wang, First-principles investigation of transient current in molecular devices by using complex absorbing potentials, Phys. Rev. B 87(20), 205401 (2013)
CrossRef
ADS
Google scholar
|
[30] |
B. G. Wang, J. Wang, and H. Guo, Current partition: A nonequilibrium Green’s function approach, Phys. Rev. Lett. 82(2), 398 (1999)
CrossRef
ADS
Google scholar
|
[31] |
M. Büttiker, A. Prêtre, and H. Thomas, Dynamic conductance and the scattering matrix of small conductors, Phys. Rev. Lett, 1993, 70(26): 4114; M. Buttiker, Dynamic conductance and quantum noise in mesoscopic conductors, J. Math. Phys. 37(10), 4793 (1996)
|
[32] |
D. Kienle, M. Vaidyanathan, and F. Léonard, Selfconsistent AC quantum transport using nonequilibrium Green functions, Phys. Rev. B 81(11), 115455 (2010)
CrossRef
ADS
Google scholar
|
[33] |
Y. D. Wei and J. Wang, Current conserving nonequilibrium AC transport theory, Phys. Rev. B 79(19), 195315 (2009)
CrossRef
ADS
Google scholar
|
[34] |
Y. J. Yu, H. X. Zhan, Y. D. Wei, and J. Wang, Currentconserving and gauge-invariant quantum AC transport theory in the presence of phonon, Phys. Rev. B 90(7), 075407 (2014)
CrossRef
ADS
Google scholar
|
[35] |
Y. J. Yu, B. Wang, and Y. D. Wei, AC response of a carbon chain under a finite frequency bias, J. Chem. Phys. 127(10), 104701 (2007)
CrossRef
ADS
Google scholar
|
[36] |
B. Wang and J. Wang, Charge relaxation resistance at atomic scale: An ab initiocalculation, Phys. Rev. B 77(24), 245309 (2008)
CrossRef
ADS
Google scholar
|
[37] |
B. Wang, Y. J. Yu, L. Zhang, Y. D. Wei, and J. Wang, Oscillation of dynamic conductance of Al-C n-Al structures: Nonequilibrium Green’s function and density functional theory study, Phys. Rev. B 79(15), 155117 (2009)
CrossRef
ADS
Google scholar
|
[38] |
L. Zhang, B. Wang, and J. Wang, First-principles investigation of alternating current density distribution in molecular devices, Phys. Rev. B 86(16), 165431 (2012)
CrossRef
ADS
Google scholar
|
[39] |
H. Zhang, K. S. Chan, and Z. J. Lin, The dynamical conductance of graphene tunnelling structures, Nanotechnology 22(50), 505705 (2011)
CrossRef
ADS
Google scholar
|
[40] |
C. Roland, M. B. Nardelli, J. Wang, and H. Guo, Dynamic conductance of carbon nanotubes, Phys. Rev. Lett. 84(13), 2921 (2000)
CrossRef
ADS
Google scholar
|
[41] |
Z. Z. Yu and J. Wang, Transport properties of WSe2 nanotube heterojunctions: A first-principles study, Phys. Rev. B 91(20), 205431 (2015)
CrossRef
ADS
Google scholar
|
[42] |
D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, J. Appl. Phys. 93(2), 793 (2003)
CrossRef
ADS
Google scholar
|
[43] |
J. P. Bergfield and C. A. Stafford, Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett. 9(8), 3072 (2009)
CrossRef
ADS
Google scholar
|
[44] |
X. T. Jia and K. Xia, Electric and thermo spin transfer torques in Fe/Vacuum/Fe tunnel junction, Front. Phys. 9(6), 768 (2014)
CrossRef
ADS
Google scholar
|
[45] |
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455(7214), 778 (2008)
CrossRef
ADS
Google scholar
|
[46] |
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)
CrossRef
ADS
Google scholar
|
[47] |
H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Theory of the spin Seebeck effect, Rep. Prog. Phys. 76(3), 036501 (2013)
CrossRef
ADS
Google scholar
|
[48] |
J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
CrossRef
ADS
Google scholar
|
[49] |
B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
CrossRef
ADS
Google scholar
|
[50] |
J. W. Li, B. Wang, F. M. Xu, Y. D. Wei, and J. Wang, Spin-dependent Seebeck effects in graphenebased molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
CrossRef
ADS
Google scholar
|
[51] |
Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and magnetothermoelectric transport measurements of graphene,Phys. Rev. Lett. 102(9), 096807 (2009)
CrossRef
ADS
Google scholar
|
[52] |
M. G. Zeng, Y. P. Feng, and G. C. Liang, Graphenebased Spin Caloritronics, Nano Lett. 11(3), 1369 (2011)
CrossRef
ADS
Google scholar
|
[53] |
Z. Y. Zhao, X. C. Zhai, and G. J. Jin, Bipolar-unipolar transition in thermospin transport through a graphenebased transistor, Appl. Phys. Lett. 101(8), 083117 (2012)
CrossRef
ADS
Google scholar
|
[54] |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63(12), 121104 (2001)
CrossRef
ADS
Google scholar
|
[55] |
D. R. Hamann, M. Schluter, and C. Chiang, Norm- Conserving Pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
CrossRef
ADS
Google scholar
|
[56] |
O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spindensity functional formalism, Phys. Rev. B 13(10), 4274 (1996)
|
[57] |
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
CrossRef
ADS
Google scholar
|
[58] |
T. Rejec, A. Ramsak, and J. H. Jefferson, Spindependent thermoelectric transport coefficients in near perfect quantum wires, Phys. Rev. B 65(23), 235301 (2002)
CrossRef
ADS
Google scholar
|
[59] |
B. Wang, J. W. Li, Y. J. Yu, Y. D. Wei, J. Wang, and H. Guo, Giant tunnel magneto-resistance in graphene based molecular tunneling junction, Nanoscale 8(6), 3432 (2016)
CrossRef
ADS
Google scholar
|
[60] |
J. Nakabayashi, D. Yamamoto, and S. Kurihara, Band selective filter in a zigzag graphene nanoribbon, Phys. Rev. Lett. 102(6), 066803 (2009)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |