The zero active mass condition in Friedmann–Robertson–Walker cosmologies

Fulvio Meliay

PDF(129 KB)
PDF(129 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (1) : 129802. DOI: 10.1007/s11467-016-0611-4
RESEARCH ARTICLE
RESEARCH ARTICLE

The zero active mass condition in Friedmann–Robertson–Walker cosmologies

Author information +
History +

Abstract

Many cosmological measurements today suggest that the Universe is expanding at a constant rate. This is inferred from the observed age versus redshift relationship and various distance indicators, all of which point to a cosmic equation of state (EoS) p = −ρ/3, where ρ and p are, respectively, the total energy density and pressure of the cosmic fluid. It has recently been shown that this result is not a coincidence and simply confirms the fact that the symmetries in the Friedmann–Robertson–Walker (FRW) metric appear to be viable only for a medium with zero active mass, i.e., ρ+ 3p = 0. In their latest paper, however, Kim, Lasenby and Hobson (2016) have provided what they believe to be a counter argument to this conclusion. Here, we show that these authors are merely repeating the conventional mistake of incorrectly placing the observer simultaneously in a comoving frame, where the lapse function gtt is coordinate dependent when ρ+ 3p≠0, and a supposedly different, freefalling frame, in which gtt = 1, implying no time dilation. We demonstrate that the Hubble flow is not inertial when ρ+ 3p≠0, so the comoving frame is generally not in free fall, even though in FRW, the comoving and free-falling frames are supposed to be identical at every spacetime point. So this confusion of frames not only constitutes an inconsistency with the fundamental tenets of general relativity but, additionally, there is no possibility of using a gauge transformation to select a set of coordinates for which gtt = 1 when ρ+ 3p≠0.

Keywords

cosmology / gravitation / spacetime metric

Cite this article

Download citation ▾
Fulvio Meliay. The zero active mass condition in Friedmann–Robertson–Walker cosmologies. Front. Phys., 2017, 12(1): 129802 https://doi.org/10.1007/s11467-016-0611-4

References

[1]
C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground Emission,Astrophys. J. Suppl. 148(1), 97 (2003)
CrossRef ADS Google scholar
[2]
D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters,Astrophys. J. Suppl. 148(1), 175 (2003)
CrossRef ADS Google scholar
[3]
P. A. R. Ade, (Planck Collaboration), Planck 2013 results. XXIII. Isotropy and statistics of the CMB,A&A 571, A23 (2014)
[4]
F. Melia, The Edge of Infinity: Supermassive Black Holes in the Universe, Cambridge: Cambridge University Press, 1972, p. 119
[5]
F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
CrossRef ADS Google scholar
[6]
F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
CrossRef ADS Google scholar
[7]
F. Melia and A. S. H. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2012)
CrossRef ADS Google scholar
[8]
F. Melia, Physical basis for the symmetries in the Friedmann–Robertson–Walker metric, Front. Phys. 11(4), 119801 (2016)
CrossRef ADS Google scholar
[9]
D. Y. Kim, A. N. Lasenby, and M. P. Hobson, Friedmann–Robertson–Walker models do not require zero active mass, Mon. Not. R. Astron. Soc. 460(1), L119 (2016), arXiv: 1601.07890
[10]
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, New York: Wiley, 1972
[11]
A. Harvey, The principle of equivalence, Ann. Phys. 29(3), 383 (1964)
CrossRef ADS Google scholar
[12]
M. Carrera and D. Giulini, Influence of global cosmological expansion on local dynamics and kinematics, Rev. Mod. Phys. 82, 169 (2010), arXiv: 0810.2712v2
CrossRef ADS Google scholar
[13]
H. Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28(11), 1920 (1987)
CrossRef ADS Google scholar
[14]
H. Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28(11), 1924 (1987)
CrossRef ADS Google scholar
[15]
S. M. Kopeikin, Local gravitational physics of the Hubble expansion, Eur. Phys. J. Plus 130(1), 11 (2015)
CrossRef ADS Google scholar
[16]
D. Y. Kim, A. N. Lasenby, and M. P. Hobson, Spherically-symmetric solutions in general relativity, Phys. Rev. D (2016) (submitted), arXiv: 1604.06365
[17]
B. O. J. Tupper, Tetrad field equations and a generalized Friedmann equation, Astrophys. Space Sci. 28(1), 225 (1974)
CrossRef ADS Google scholar
[18]
P. van Oirschot, J. Kwan, and G. F. Lewis, Through the looking glass: Why the “Cosmic Horizon” is not a horizon, Mon. Not. R. Astron. Soc. 404, 1633 (2010), arXiv: 1001.4795
CrossRef ADS Google scholar
[19]
G. F. Lewis and P. van Oirschot, How does the Hubble sphere limit our view of the Universe? Mon. Not. R. Astron. Soc. 423(1), L26 (2012)
CrossRef ADS Google scholar
[20]
O. Bikwa, F. Melia, and A. S. H. Shevchuk, Photon geodesics in Friedmann–Robertson–Walker cosmologies, Mon. Not. R. Astron. Soc. 421(4), 3356 (2012)
CrossRef ADS Google scholar
[21]
F. Melia, The cosmic horizon for a universe with Phantom energy, J. Cosmol. Astropart. Phys. 09, 029 (2012)
[22]
F. Melia, Proper size of the visible Universe in FRW metrics with a constant space-time curvature, Class. Quantum Gravity 30(15), 155007 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(129 KB)

Accesses

Citations

Detail

Sections
Recommended

/